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One of the goals of Artificial Intelligence (AI) is to enable multiple agents to

interact, co-ordinate and compete with each other to realize various goals. Typically,

this is achieved via a system which acts as a mediator to control the agents’ behavior

via incentives. Such systems are ubiquitous and include online systems for shopping

(e.g., Amazon), ride-sharing (e.g., Uber, Lyft) and Internet labor markets (e.g.,

Mechanical Turk). The main algorithmic challenge in such systems is to ensure that

they can operate under a variety of informational constraints such as uncertainty in

the input, committing to actions based on partial information or being unaffected by

noisy input. The mathematical framework used to study such systems are broadly

called sequential decision making problems where the algorithm does not receive

the entire input at once; it obtains parts of the input by interacting (also called

“actions”) with the environment.

In this thesis, we answer the question, under what informational constraints

can we design efficient algorithms for sequential decision making problems.



The first part of the thesis deals with the Online Matching problem. Here,

the algorithm deals with two prominent constraints: uncertainty in the input and

choice of actions being restricted by a combinatorial constraint. We design several

new algorithms for many variants of this problem and provide provable guarantees.

We also show their efficacy on the ride-share application using a real-world dataset.

In the second part of the thesis, we consider the Multi-armed bandit problem with

additional informational constraints. In this setting, the algorithm does not receive

the entire input and needs to make decisions based on partial observations. Addi-

tionally, the set of possible actions is controlled by global resource constraints that

bind across time. We design new algorithms for multiple variants of this problem

that are worst-case optimal. We provide a general reduction framework to the clas-

sic multi-armed bandits problem without any constraints. We complement some of

the results with preliminary numerical experiments.
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Chapter 1: Introduction

“We can only see a short distance ahead, but we can see plenty there

that needs to be done.”

– Alan Turing (possibly on sequential decision making)

The last decade has seen a rise in large-scale applications of artificial intelli-

gence and machine learning techniques in various domains ranging from e-commerce,

recommender systems to healthcare, medicine and climate change efforts. The

two biggest contributors to this phenomenon are the availability of large amounts

of datasets to perform supervised learning and cheap computing resources. This

led to efficient application of large scale supervised learning algorithms on massive

datasets. From a theoretical standpoint, these applications gave rise to a host of

research questions on newer models of computation for algorithm design. One such

model is the stochastic input model, where the algorithm receives input as a sample

from some distribution. Assumptions about this distribution are motivated from

those that are commonly observed across multiple datasets. For a significant por-

tion of this thesis, we study algorithm design questions that use the stochastic input

model.
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Although supervised learning on “offline data” has been very successful, the

current goal is to tackle applications from a wider range of domains where the data

is inherently “real-time”. This implies that although one may be able to use the vast

historical data to pre-compute predictions about the future the algorithm’s decision

has to be done “online”. Often the time-scales at which these algorithms operate

are in the order of milli-seconds; thus it vastly reduces the available compute time to

make decisions. Moreover, the algorithm needs to optimize over multiple objectives

and operate in domains where the decision affects human-beings. Concretely, con-

sider a ride-share platform such as Uber or Lyft. A central problem is to efficiently

match a driver to a request. However, the platform does not get all the requests

before it makes the matching decisions. Based on historical observational data, the

platform can obtain an estimate of the future requests, in order to optimize the

allocation policy; however, the actual match has to be done real-time. The goal

is to match requests to drivers while learning the best strategy and using them to

optimize for various criteria such as revenue, welfare and fairness. In fact, this gen-

eral setup is ubiquitous in many other applications such as crowdsourcing, Internet

advertising markets and recommender systems. These applications motivate the

study of a class of problems called “sequential decision making” (SDM) where the

algorithm does not receive the entire input at once; the algorithm makes a sequence

of decisions to obtain the input sequence (often the inputs are stochastic and/or

depends on past decisions).

In many of these applications, the algorithm is further restricted in the choice

of future decisions it can make based on the current actions. This imposes infor-

2



mation bottlenecks for the algorithm to learn about the future based on the past;

we abstractly call these the resource constraints. Thus, the central thesis of this

work is to understand under what informational constraints can we design efficient

algorithms for sequential decision making problems.

We make progress towards this by considering two broad classes of SDM prob-

lems and design efficient algorithms for variants thereof. The first class of problems

is called the online matching problem where the goal of the algorithm is to find an

optimal graph matching when the vertices of the graph are provided sequentially.

Variants of this problem have many applications such as matching riders to drivers,

keywords to advertisements and recommending movies to users. The algorithm is

usually faced with one or more objectives it has to optimize for such as revenue,

diversity and fairness. The second class we consider is a variant of the classic multi-

armed bandit problem called bandits with knapsacks. This is a sequential learning

problem where the algorithm wants to learn parameters of the system under various

information constraints such as the number of samples it is allowed to collect. Many

applications such as ride-share, crowdsourcing and recommender systems have tun-

able parameters whose optimal value is not known apriori and the algorithm needs

to explore several choices based on real-time inputs. However, it is also usually

constrained by external constraints such as limited inventory. Thus variants of this

model is useful in such application domains.

Our Contributions and Outline: The rest of this thesis is structured as follows.

Chapter 2 describes the SDM framework formally and provides the benchmark and

3



performance metric we use for the algorithms. Then the thesis is divided into two

parts. Part I deals with problems in Online Matching. In Chapter 3 we consider

the weighted version of the online matching problem under stochastic inputs and

show algorithms with improved competitive ratio. In Chapter 4 we consider an

extension of the problem where the matched vertices may become available after

certain number of time-steps from the time it is matched. We design a new algorithm

for this problem and show that the competitive ratio obtained is tight among all

algorithms that use a class of techniques. In Chapter 5 we consider another extension

of the problem where the goal of the algorithm is to maximize multiple objectives,

namely total reward and the diversity of edge types. Abstractly, we solve the online

matching problem with submodular objective functions. In the last chapter 6 of

this part we consider the real-world application of matching drivers to riders on a

ride-share platform. We model this problem as an Online Matching problem and

use a real-world dataset to empirically evaluate the proposed algorithms. In Part

II of the thesis we consider the variants of the bandit with knapsack problem. In

Chapter 7 we consider the adversarial version of the basic bandits with knapsacks

problem and give an optimal algorithm via a reduction to the classic multi-armed

bandit problem. Along the way we also give a new algorithm to the stochastic

bandits with knapsacks problem. We show many extensions that can be obtained

as a corollary of this reduction. In Chapter 8 we consider an extension of this

problem to the combinatorial semi-bandits with knapsacks problem in the stochastic

setting and give optimal algorithm for this problem. In this chapter, we also perform

experiments on simulated datasets to evaluate the performance of this algorithm in

4



practice and compare it with other algorithms proposed in the literature. Finally

in Chapter 9 we conclude the thesis with a few open problems and broader future

directions for research.

5



Chapter 2: Preliminaries

In this chapter, we give a formal definition of the sequential decision mak-

ing protocol. The sequential decision making framework is used across multiple

communities (e.g., reinforcement learning, experimental design, online algorithms)

with (slightly) different terminologies. Here we describe a general version of the

sequential decision making protocol that captures all problems considered in this

thesis.

2.1 Sequential Decision Making (SDM) protocol

The SDM protocol can be viewed as a repeated game between the algorithm

and the nature. The protocol proceeds in rounds with the total number of rounds

T known to both the players a-priori. At each time-step t ∈ [T ] the nature first

presents part of the input xt to the algorithm. The algorithm then chooses an action

at ∈ At, where At represents the set of feasible actions available to the algorithm

at time t. The choice at yields a reward rt to the algorithm and modifies the set of

available actions At+1 to the algorithm in the next round. The goal of the algorithm

is to maximize the total reward obtained in the T rounds. Critically, the algorithm’s

action at is binding and cannot be revoked at a later time. Moreover, it does not

6



receive the full input beforehand and thus has to optimize based on observed history

until time t and any predictions of the future the algorithm may have. The set of

actions At+1 could potentially be a strict subset of At; abstractly we call this as

resource constraints. Resource constraints make the problem significantly harder

and understanding under what constraints can we design efficient algorithms is the

central thesis of this work. Figure 2.1 describes the protocol formally. Through-

out this thesis, we use the term online algorithm interchangeably to refer to any

algorithm for the SDM protocol.

Given: number of time-steps T .

In each round t ∈ [T ],

1. Nature reveals part of the input xt.

2. The algorithm chooses action at ∈ At.

3. Algorithm receives reward rt which is a function of at.

4. The set of available actions At+1 is updated based on at.

Figure 2.1: SDM protocol

2.1.1 Models of the Nature

The literature makes various assumption on the power of the nature. In the

adversarial model, the nature is assumed to be an arbitrary adversary and the goal

of the algorithm is to deal with the worst-case input sequence. In the adaptive

7



adversary model, this adversary is assumed to be adaptive to the choices of the

algorithm. In other words, the input xt, the reward rt and the new set of actions

At+1 can be set by the nature after observing the set of actions a1, a2, . . . , at−2
1.

In the oblivious adversary model, the adversary has lesser power and the map from

action at to input xt+1, reward rt and action set At+1 should be fixed before the start

of the game. Thus, the adversary cannot adapt its strategy to the actions taken by

the algorithm. We also consider stochastic models of the adversary where the input

xt and the reward rt is drawn from a joint distribution D over all possible tuples

(xt, rt), at each time-step. Additionally, in all problems considered in this thesis,

this draw is independent across time-steps (however, the distribution from which

the tuples are sampled may vary over time). In the known distribution model,

we assume that the algorithm knows the distribution(s) before the game starts

while in the unknown distribution model, the algorithm does not have access to the

distribution(s) and has to learn the relevant information over time.

2.2 Landscape of Problems

Many problems fall under the category of the SDM protocol described above.

In this thesis, we focus on two specific models of computation namely Online Match-

ing and Multi-armed Bandits with Knapsacks. We briefly describe the basic version

of these problems and show how they fit into the broader SDM framework. Ta-

ble 2.1 summarizes how the two problems fit into the SDM protocol described in

Figure 2.1.

1In fact, in some problems we allow the adversary to also observe the action at−1.
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2.2.1 Online Matching

In this problem the algorithm makes a sequence of decisions to solve a graph

matching problem. We are given a bipartite graph G = (U, V,E) with the vertex

set U given before the start of the game. The vertices in the set V are presented

sequentially at each time-step. The algorithm either matches the presented vertex

vt to any (available) neighbor in U or rejects v irrevocably. Once a vertex u ∈ U is

matched to some v, it becomes unavailable for the rest of the time-steps. The goal

is to maximize the total size of the matching. Mapping this to the SDM protocol,

the input xt is the vertex vt presented at time-step t. The reward rt is 1 if vt

was matched and 0 otherwise. The set of actions At is the available vertices in U

at time-step t. This problem was first introduced by Karp et al. [116] and many

variants of this basic problem has since been studied. In this thesis, we consider

many variants of this basic problem which has applications in many modern large-

scale matching markets such as ride-share, recommender systems, job scheduling

and online advertising.

2.2.2 Multi-armed Bandits with Knapsacks

In this problem the algorithm has K arms to choose from at each time-step.

There are d resources each with a global budget B. The algorithm first chooses

an arm at ∈ [K]. The nature then reveals a reward rt(at) for the chosen arm and

reveals the consumption of each of the d resources c1,t(at), . . . , cd,t(at). We allow the

algorithm to skip any round (denoted by an action a(null) ∈ [K]) which yields no

9



reward. The moment some resource is exhausted the algorithm is allowed to play

only the action a(null) in all future time-steps. The goal is to maximize the total

reward collected by the algorithm. In the SDM protocol, the input xt is the outcome

vector ot−1 := (rt−1(at−1); c1,t−1(at−1), . . . , cd,t−1(at−1)) for all time-steps t ≥ 2 and

for t = 1 the nature does not provide any input to the algorithm. The reward rt is

just the scalar rt(at). The set of actions At remains the same set of K arms until one

resource is exhausted after which the set just reduces to the singleton set {a(null)}.

This problem was introduced as an extension to the classic multi-armed bandit

problem (Thompson [175]) to bandits with resource constraints by Badanidiyuru

et al. [33] and has since garnered a lot of attention.

Problem/Parameter Input xt Reward rt Action set At

Online Matching Vertex vt ∈ V
1 if vt matched

Available vertices in U
0 otherwise

Bandits with t = 1: No input
rt(at)

[K] if resource not exhausted

Knapsacks t ≥ 2: ot−1 a(null) otherwise

Table 2.1: Various problems in the SDM framework

2.3 Benchmark

We compare the performance of any online algorithm against a benchmark (de-

noted by OPT). We primarily deal with two definitions of the benchmark, namely,

best fixed distribution and best dynamic policy which we now define.

10



Definition 1 (Best dynamic policy). Given an instance I of the problem, the best

dynamic policy is the total reward obtained by the best possible algorithm in hindsight

given the realizations of all the randomness associated with the input. Thus, OPT

in this case is a random variable and we compare against OPTDP := E[OPT].

Algorithms described in Chapters 3, 4, 5 and 8 use this benchmark.

Definition 2 (Best fixed distribution). Given an instance I of the problem, the

best fixed distribution is the total expected reward obtained by sampling from the best

possible fixed distribution. We use the notation OPTFD := E[OPT] to denote this

benchmark.

This benchmark is used in the algorithms described in Chapter 7. More dis-

cussion of this benchmark is deferred to Chapter 7.

2.4 Performance Metric

To measure the performance of online algorithms the following notions are

commonly used, namely competitive ratio and regret. We define both these metrics

now.

Definition 3 (Competitive ratio). Let E[REW] denote the expected reward obtained

by any algorithm ALG and let E[OPT] denote the expected reward of the benchmark.

Then competitive ratio of the algorithm ALG is the value of the ratio E[REW]
E[OPT]

.

Note that in Definition 3, the ratio is atmost 1 and the goal is to maximize this

quantity. To keep it consistent with the related literature, in Chapter 7, we use the
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reciprocal E[OPT]
E[REW]

as the performance metric. In that case, the goal is to minimize

the quantity.

Usually, competitive ratio is used in problems when the best dynamic policy

benchmark is used (Buchbinder and Naor [46]). However, for the bandits with

knapsacks problem we consider in Chapter 7 we show that even against the best

fixed distribution benchmark, the notion of competitive ratio is necessary. We are

not aware of other problems that exhibit this behavior.

Definition 4 (Regret). Let E[REW] denote the expected reward obtained by any

algorithm ALG and let E[OPT] denote the expected reward of the benchmark. Then

regret of the algorithm ALG is the value of the difference E[OPT]− E[REW].

Regret of any algorithm is non-negative and the goal is to minimize regret.

Regret is usually defined against the weaker best fixed distribution benchmark.

However, in Chapter 7 we show that for the stochastic version of the bandits with

knapsacks problem we can obtain non-trivial regret bounds even against the best

dynamic policy benchmark. Regret is the primary metric in Chapter 8.

Remark 1. Competitive ratio is invariant to the scale of the rewards {rt}t∈[T ] while

regret scales linearly with the scale of the rewards. Thus, for consistency throughout

the thesis we assume that rt ∈ [0, 1] for all t ∈ [T ].

Table 2.2 summarizes the metric and the benchmark used for the various

problems considered in this thesis.

Upper-bound on OPT by a mathematical program. A common strategy

(e.g., see Buchbinder and Naor [46], Mehta [139]) in algorithm design is to not work
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Problem/Metric Competitive Ratio Regret

Online Matching Dynamic Policy -

Stochastic Bandits with Knapsacks - Dynamic Policy

Adversarial Bandits with Knapsacks Fixed Distribution -

Table 2.2: Summary of benchmark and metrics for various problems

directly with OPT but to use a suitable upper-bound on its value. This upper-bound

is typically the optimal solution to an appropriate mathematical program. The ad-

vantage of this method is that, the optimal solution of such mathematical programs

have additional interesting properties which can be exploited in the analysis. More-

over, from the definition of the performance metrics it can be seen that algorithms

that are “good” (either low competitive ratio or regret) against the optimal solution

of this program are also good against OPT. For all problems considered in this

thesis, we always use the optimal solution of an appropriate mathematical program

(typically a linear program) as the proxy for OPT.
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Part I

Online Matching
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Chapter 3: Online Matching

3.1 Introduction

In this chapter, we consider the model of Online Algorithms. The central prob-

lem of study will be the Online Weighted Matching problem under distributional ar-

rival sequences. The model of computation has many motivational examples such as

Online advertising, ride-share, crowdsourcing and kidney-exchange. In the simplest

setting of this problem, we start with an weighted bipartite graph G = (U, V,E).

The protocol proceeds in T rounds with the set U available before the start of

the game. In each round t ∈ [T ], a vertex vt ∈ V is presented to the algorithm

(henceforth we interchangeably use the term arrives) along with all its neighboring

edges in U (denoted by δ(vt)) and their corresponding weights. The algorithm has

two irrevocable choices: either choose an edge e = (u, vt) ∈ δ(vt), where u is an

unmatched vertex, or not match vt ∈ V . Thus, a choice to match an edge implies

that the algorithm cannot un-match it in a future time-step. Likewise, choosing

to drop vt implies that it cannot re-visit this vertex at a later time. The goal of

the algorithm is to maximize the total weight of the matching obtained after the T

rounds of the protocol. Figure 3.1 formally describes the protocol for the simplest

version of this problem.
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Given: number of time-steps T and offline vertex set U .

In each round t ∈ [T ],

1. A vertex vt ∈ V and the set of neighbors δ(vt) is presented to the

algorithm.

2. The algorithm either chooses an unmatched vertex u ∈ U to match vt or

drops the request vt.

Figure 3.1: Online Matching Protocol: A basic version

3.1.1 Arrival sequence.

The landscape of problems can be divided based on the assumptions placed

on the manner in which vt is chosen to arrive at time t. The earliest version of this

problem, studied by Karp et al. [116], assumed that the vertices vt ∈ V is chosen

by an oblivious adversary and that all edge-weights are identical. Following this,

more recent works proposed two other models of arrival, namely, the unknown and

the known distribution models. In both these cases, we assume that the arrival

sequence is stochastic and sampled from a product distribution D over the set of

possible arrivals. In other words, at every time-step t, the vertex vt is sampled from

a distribution Dt independent of all other time-steps.

The focus of this work will be on known product distributions. We show some

future directions where we consider models that interpolates between the unknown

and known product distributions.
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3.1.2 Competitive ratio.

The performance of any online algorithm for this problem is compared against

the best dynamic policy (Definition 1) . The competitive ratio with respect to this

benchmark is defined as follows. It is the ratio of the size of the matching obtained

by the algorithm to that of the optimal matching if the entire arrival sequence

was known (we interchangeably use the phrase the optimal matching of the offline

instance). Formally, let ALG(I) (a random variable) denote the size of the matching

obtained by any online algorithm ALG on instance I. Let OPT(I) denote the size

of the optimal matching (a random variable) in instance I if the arrival sequence of

vertices in V was available a-priori. Then the competitive ratio of ALG is defined

as maxI E[ALG(I)]/E[OPT(I)].

3.2 Related work

The seminal paper of Karp et al. [116] introduced this problem where they gave

the optimal competitive ratio of 1−1/e when the vertex arrival is set by an oblivious

adversary. Following this work, this problem has garnered much interest due to its

various applications (see Mehta [139] for a comprehensive survey). The vertex-

weighted version of this problem was introduced by Aggarwal et al. [8], where they

give an optimal
(
1− 1

e

)
ratio for the adversarial arrival model. The edge-weighted

setting has been studied in the adversarial model by Feldman et al. [82], where they

consider an additional relaxation of “free-disposal”.

In addition to the adversarial and known I.I.D. models, online matching is
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also studied under several other variants such as random arrival order, unknown

distributions, and known adversarial distributions. In the setting of random arrival

order, the arrival sequence is assumed to be a random permutation over all online

vertices, see e.g., Devanur and Hayes [69], Kesselheim et al. [119], Korula and Pál

[122], Mahdian and Yan [136]. In the case of unknown distributions, in each round an

item is sampled from a fixed but unknown distribution. If the sampling distributions

are required to be the same during each round, it is called unknown I.I.D. (Devanur

et al. [73, 75]); otherwise, it is called adversarial stochastic input (Devanur et al.

[75]). As for known adversarial distributions, in each round an item is sampled from

a known distribution, which is allowed to change over time (Alaei et al. [16, 17]).

Another variant of this problem is when the edges have stochastic rewards. Models

with stochastic rewards have been previously studied by Mehta and Panigrahi [140],

Mehta et al. [142] among others, but not in the known I.I.D. model.

In the known i.i.d. setting prior work has considered unweighted, vertex-

weighted and the edge-weighted versions of the problem. The vertex-weighted and

unweighted setting (often studied in tandem) have many results starting with Feld-

man et al. [83] who were the first to beat 1 − 1/e with a competitive ratio of 0.67

for the unweighted problem. This was improved by Manshadi et al. [137] to 0.705

with an adaptive algorithm. In addition, they showed that even in the unweighted

variant with integral arrival rates, no algorithm can achieve a ratio better than

1− e−2 ≈ 0.86. Finally, Jaillet and Lu [111] presented an adaptive algorithm which

used a clever LP to achieve 0.725 and 1− 2e−2 ≈ 0.729 for the vertex-weighted and

unweighted problems, respectively. In the edge-weighted setting model Haeupler

18



et al. [102] were the first to beat 1− 1/e by achieving a competitive ratio of 0.667.

They use a discounted LP with tighter constraints and employ the power of two

choices paradigm to guide their online algorithm.

A closely related problem is the Adwords problem where every edge has a bid

and every offline vertex has a budget. The goal is to match an online vertex to any

offline vertex that has not exhausted its budget. This problem was introduced by

Mehta et al. [141] and subsequently studied by Buchbinder et al. [49], Devanur and

Jain [71], Devanur et al. [74], Goel and Mehta [95]. A series of works (Aggarwal

et al. [8], Chan et al. [56], Devanur et al. [74], Goel and Mehta [95]) has attempted

to simplify the RANKING algorithm proposed in Karp et al. [116] which has been

useful to develop algorithms for related problems such as vertex-weighted matching

and Adwords.

Another related model is the two-sided online matching problem where all

vertices in the graph come online and the goal is to match the vertices that are

currently present. A series of recent works (e.g., Dickerson et al. [77], Huang et al.

[107, 108], Truong and Wang [179], Wang and Wong [183]) consider many variants

of this model and design improved algorithms. Online matching has also been

considered in the edge-arrival model where the edges arrive instead of the vertices.

Representative works include Badanidiyuru [29], Buchbinder et al. [51], McGregor

[138].
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3.3 Online Weighted Matching

3.3.1 Formal Description of the Problem

Before the start of the game, we are given a weighted bipartite graph G =

(U, V,E) and a corresponding weight function w : E → R+ that maps each edge to

a positive real number. Additionally, we are given a rate function r : V → Z+ which

denotes the number of times a vertex v ∈ V would arrive in expectation across all

the rounds in the game. The game proceeds in T rounds, where in each round a

vertex v ∈ V is sampled i.i.d. from a distribution D such that D(v) = r(v)/T .

In particular, the distributions Dt in the product distribution is the same in every

time-step. As noted in Haeupler et al. [102], we can assume that r(v) = 1 for

every vertex wlog. Indeed, any vertex v such that r(v) > 1 can be replaced by r(v)

different vertices each an arrival rate of 1. Thus, this assumption implies that the

size of the new set of online vertices is exactly T , since the sum of expectations

equals the total number of online rounds. The goal of the algorithm is to match an

incoming vertex v ∈ V to any unmatched neighbor (or drop) irrevocably in each

round, such that the sum of the weights of the matched edges after T rounds is

maximized.

Asymptotic assumption and notation. We will always assume T is large and

analyze algorithms as T goes to infinity: e.g., if x ≤ 1 − (1 − 2/T )T , we will just

write this as “x ≤ 1 − 1/e2” instead of the more-accurate “x ≤ 1 − 1/e2 + o(1)”.

These suppressed o(1) terms will subtract at most o(1) from our competitive ratios.
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3.3.2 Linear Relaxation to Upper-bound OPT

As discussed in Chapter 2, a common strategy in online algorithms is to find

a suitable upper-bound on OPT using a mathematical program (typically a LP)

and compare the performance of the algorithm to this stronger benchmark. One of

the challenges in the design of algorithms is to ensure that the gap between OPT

and this upper-bound is as small as possible. In particular, one of the contributions

of our work is in constructing a stronger upper-bound compared to prior work. In

Lemma 1, we prove that the following LP is an upper-bound on OPT.

maximize
∑

e∈E w(e) x(e) such that∑
e∈δ(u) x(e) ≤ 1 ∀u ∈ U∑
e∈δ(v) x(e) ≤ 1 ∀v ∈ U

0 ≤ x(e) ≤ 1− 1/e ∀e ∈ E

x(e) + x(e′) ≤ 1− 1/e2 ∀e, e′ ∈ δ(u),∀u ∈ U

(3.1)

Lemma 1. Let x∗ denote an optimal solution to LP (3.1). Then we have OPT ≤∑
e∈E w(e)x∗(e).

Proof. Let Y (e) denote the indicator random variable for the event that edge e ∈ E is

matched in the optimal solution for a given arrival sequence A. Let y(e) := EA[Y (e)]

for every edge e ∈ E. We will now argue that the vector y := (y(e))e∈E is a feasible

solution to the LP (3.1). Consider a vertex u ∈ U . We have that
∑

e∈δ(u) Y (e) ≤ 1.

Taking expectations on both sides and using the linearity of expectation we have∑
e∈δ(u) y(e) ≤ 1. This shows that y is feasible to the first constraint. Let R(v)
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denote the random variable for the number of times a vertex v ∈ V arrived in a given

arrival sequence A. Then we have, for every v ∈ V ,
∑

e∈δ(v) Y (e) ≤ R(v). From

the integral arrival rates assumption, EA[R(v)] = 1 for every v ∈ V . Thus, from

linearity of expectation we obtain
∑

e∈δ(v) y(e) ≤ 1. This shows that y is feasible to

the second constraint. For any edge e = (u, v), let I[R(v) = 0] be an indicator for

the event that a vertex v ∈ V never arrives in the T rounds. Thus, for any arrival

sequence A, we have Y (e) ≤ I[R(v) 6= 0]. Taking expectations on both sides we get

y(e) ≤ EA[I[R(v) 6= 0]. The probability that a vertex v never arrives in T rounds

is
(
1− 1

T

)T ≤ 1
e
. Thus, EA[I[R(v) 6= 0] ≤ 1 − 1

e
. This shows that y is feasible to

the third constraint. Consider two edges e, e′ ∈ δ(u) for some u ∈ U . Let e = (u, v)

and e′ = (u, v′) and as before let I[R(v) 6= 0] and I[R(v′) 6= 0] denote the indicator

for the events that v, v′ arrives at least once in the T rounds, respectively. For any

arrival sequence A we have that Y (e) + Y (e′) ≤ I[R(v) 6= 0] ∧ I[R(v′) 6= 0]. Taking

expectations on both sides we get y(e) + y(e′) ≤ EA[I[R(v) 6= 0]∧ I[R(v′) 6= 0]]. The

probability that both v and v′ never arrive in the T rounds is given by
(
1− 2

T

)T ≤ 1
e2 .

Thus, we get y(e) + y(e′) ≤ 1 − 1
e2 which shows that y is feasible to the fourth

constraint.

The expected weight of the optimal solution is EA[
∑

e∈E w(e)Y (e)] which from

linearity of expectation gives
∑

e∈E w(e)y(e). Since y is a feasible solution we have

that the optimal value to LP (3.1) is at least as large as the expected optimal

solution.
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3.4 Our Contribution

Our main contribution to this problem is to improve the competitive ratio of

0.667 due to Haeupler et al. [102] to 0.7. We do so by designing a new algorithm

based on the dependent-rounding schemes of Gandhi et al. [92]. We describe in

detail the key observation we make in the algorithm of Haeupler et al. [102] which

we exploit in our algorithm design.

Haeupler et al. [102] used two matchings, M1 and M2 of the offline graph

G = (U, V,E) to guide the online algorithm and leverage the power of two choices.

When a vertex v arrives for the first time, an attempt to match to its neighbor in

M1 is made and on its second arrival an attempt to match to its neighbor in M2 is

made. However, these two matchings may not be edge disjoint, leaving some arriving

vertices with only one choice (or possibly none). In fact, choosing two matchings as

a guide that maximize both the edge weights and the number of disjoint edges is a

major challenge that arises in applying the power of two choices to this setting.

When the same edge (u, v) is included in both matchings M1 and M2, the copy

of (u, v) in M2 offers no additional benefit and a second arrival of v is wasted (which

happens with a substantial probability). Concretely, Haeupler et al. [102] choose

the two matchings in the following manner. M1 is obtained by solving an LP similar

to (3.1) and rounding this to an integral solution. M2 is constructed by first finding

a maximum-weight matching and then removing all the edges which have already

been included in M1. A key element of their proof is to show that the probability

of an edge being removed from M2 is at most 1− 1/e ≈ 0.63.
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We make the observation that generating the two matchings in a slightly corre-

lated manner can drastically decrease this probability which translates to improved

competitive ratio. Moreover, we show a general technique to construct an ordered

set of k matchings where k is a tunable parameter. For k = 2, we show that the

probability of an edge appearing in both M1 and M2 is at most 1− 2/e ≈ 0.26.

3.5 Overview of our algorithm

We provide a overview of both the warm-up and the final algorithm. The

algorithm has two components, namely the offline phase and the online phase. The

offline phase is as follows. The algorithm first solves the LP (3.1) to obtain the

fractional solution x∗. Then we use a rounding scheme described in subsection 3.5.1

to obtain a integral vector F where each coordinate in this vector is in the set

{0, 1, 2}. Then we construct two matchings M1 and M2 of the graph induced by

the vector F (repeating an edge whenever any coordinate is 2). The online phases

uses the two matchings M1 and M2 to guide its action. When a vertex type v ∈ V

arrives for the first time, we attempt to match it to the neighbor in M1. When it

arrives for the second time, we attempt to match it to the neighbor in M2. In its

third and succeeding arrivals, we simply drop the vertex.

3.5.1 LP rounding technique

We round x∗ to an integral solution F using a two step process we call

DR[x∗, k]. The first step is to multiply x∗ by k. The second step is to apply the
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dependent rounding techniques of Gandhi et al. [92] to this new vector. For most

parts of this section we use k = 2. In the conclusion, we briefly mention an improved

algorithm that uses k = 3 to achieve the best known competitive ratio of 0.705.

While dependent rounding is typically applied to values between 0 and 1,

the useful properties extend naturally to our case in which kx∗(e) may be greater

than 1 for some edge e ∈ E. To understand this process, it is easiest to imagine

splitting each kx∗(e) into two edges with the integer value x′(e) = bkx∗(e)c and

fractional value x′′(e) = kx∗(e) − bkx∗(e)c. The former will remain unchanged by

the dependent rounding procedure since it is already an integer while the latter will

be rounded to 1 with probability x′′(e) and 0 otherwise. The final value F (e) would

be the sum of the two rounded values. The two properties of dependent rounding

we use are:

(P1) Marginal distribution: For every edge e ∈ E, let p(e) = kx∗(e)−bkx∗(e)c.

Then, Pr[F (e) = dkx∗(e)e] = p(e) and Pr[F (e) = bkx∗(e)c] = 1− p(e).

(P2) Degree-preservation: For any vertex w ∈ U ∪ V , let its fractional degree

kx∗(w) :=
∑

e∈δ(w) kx
∗(e) and integral degree be the random variable F (w) =∑

e∈δ(w) F (e). Then F (w) ∈ {bkx∗(w)c , dkx∗(w)e}.

3.6 Warmup: 0.688 competitive algorithm

As a warm-up, we describe a simple algorithm which achieves a competitive

ratio of 0.688 and introduces the key ideas in our approach. We begin by solving the

LP (3.1) to get a fractional solution vector x∗ and applying DR[x∗, 2] as described
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in Subsection 3.5.1 to get an integral vector F. We construct a bipartite graph

GF with F (e) copies of each edge e ∈ E. Note that GF will have max degree 2

since for all w ∈ U ∪ V , F (w) ≤ d2x∗(w)e ≤ 2 and thus we can decompose it into

two matchings using Hall’s Theorem. The exact choice of the two matchings is not

critical to the algorithm as long as the union contains all edges in GF. Finally, we

randomly permute the two matchings into an ordered pair of matchings, [M1,M2].

These matchings serve as a guide for the online phase of the algorithm, similar to

Haeupler et al. [102]. The warm-up algorithm, denoted by EW0, is summarized in

Algorithm 1.

Algorithm 1: EW0

1 Construct and solve the benchmark LP (3.1) for the input instance.

2 Let x∗ be an optimal fractional solution vector. Invoke DR[x∗, 2] to get a

random integral vector F.

3 Create the graph GF with F (e) copies of each edge e ∈ E and decompose

it into two matchings as described in text.

4 Randomly permute the matchings to get a random ordered pair of

matchings, say [M1,M2].

5 When a vertex type v arrives for the first time, attempt to match v to u1

if (u1, v) ∈M1; when v arrives for the second time, attempt to match v

to u2 if (u2, v) ∈M2.

6 When a vertex type v arrives for the third time or after, do nothing in

that step.
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3.6.0.1 Analysis of EW0

We will show that EW0 (Algorithm 1) achieves a competitive ratio of 0.688.

Let [M1,M2] be the randomly ordered pair of matchings. Note an edge e ∈ E

appears in both matchings if and only if x∗(e) > 1/2. We consider three types of

edges. We say an edge e ∈ E is of type ψ1, denoted by e ∈ ψ1, if and only if e

appears only in M1. Similarly e ∈ ψ2, if and only if e appears only in M2. Finally,

e ∈ ψb, if and only if e appears in both M1 and M2. Let P1, P2, and Pb be the

probabilities that an edge e ∈ ψ1, e ∈ ψ2, and e ∈ ψb is matched, respectively.

Haeupler et al. [102] proved the following Lemma 2 that bounds P1, P2, Pb for any

given matching M1 and M2.

Lemma 2 (Section 3 of Haeupler et al. [102]). For any two matchings M1 and

M2 steps (5) and (6) in Algorithm 1 implies that we have (1) P1 > 0.5808; (2)

P2 > 0.14849 and (3) Pb > 0.632.

We use Lemma 2 to prove that the warm-up algorithm EW0 achieves a ratio

of 0.688 by examining the probability that a given edge e is becomes type ψ1, ψ2,

or ψb.

Analysis of EW0. Consider the following two cases.

• Case 1: 0 ≤ x∗(e) ≤ 1/2: By the marginal distribution property of depen-

dent rounding (P1), there can be at most one copy of e in GF. Moreover, the

probability of including e in GF is 2fe. Since an edge in GF can appear in

either M1 or M2 with equal probability 1/2, we have that Pr[e ∈ ψ1] = Pr[e ∈
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ψ2] = x∗(e). Thus, the probability that edge e is added to the matching is

(x∗(e)P1 + x∗(e)P2) = 0.729x∗(e).

• Case 2: 1/2 ≤ x∗(e) ≤ 1−1/e: Similarly, by the marginal distribution (P1),

Pr[e ∈ ψb] = Pr[F (e) = d2x∗(e)e] = 2x∗(e)− b2x∗(e)c = 2x∗(e)− 1. It follows

that Pr[e ∈ ψ1] = Pr[e ∈ ψ2] = (1/2)(1− (2x∗(e)− 1)) = 1− x∗(e). Thus,the

probability that edge e is added to the matching is (noting that the first term

is from case 1 while the second term is from case 2) ((1 − x∗(e))(P1 + P2) +

(2x∗(e) − 1)Pb) ≥ 0.688x∗(e), where the worst-case occurs for an edge e with

x∗(e) = 1− 1/e.

To prove the competitive ratio, we first show the following Lemma.

Lemma 3. Let x∗ denote the optimal solution to LP (3.1). Suppose we have that

for every edge e ∈ E, Pr[e is included in matching] ≥ αx∗(e) then the competitive

ratio is at least α.

Proof. From Linearity of Expectation, we have that the total expected size of the

matching is E[
∑

e∈E w(e)I[e is matched]] =
∑

e∈E w(e) Pr[e is matched]. From the

premise we have that for every edge e ∈ E, Pr[e is included in matching] ≥ αx∗(e).

Thus, the total expected size of the matching is α
∑

e∈E w(e)x∗(e). From Lemma 1

we have
∑

e∈E w(e)x∗(e) ≥ OPT. Thus, the competitive ratio is at least α.

In the two cases above, we proved that for every e ∈ E we have Pr[e is matched] ≥

0.688x∗(e). Thus from Lemma 3 we obtain a competitive ratio of 0.688.
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3.7 0.7 competitive algorithm

In this section, we describe an improvement to the warm-up algorithm to get a

competitive ratio of 0.7. We start by making an observation about the performance

of the warm-up algorithm. After solving LP (3.1), let edges with x∗(e) > 1/2 be

called large and edges with x∗(e) ≤ 1/2 be called small. Let L and S, be the set of

large and small edges, respectively. In the warm-up analysis, small edges contributed

a much higher value of 0.729 towards the ratio as opposed to the worst-case 0.688

by the large edges. This is primarily due to the fact that we may potentially get

two copies of a large edge in GF. In this case, the copy in M1 has a better chance of

being matched, since there is no edge which can “block” it (i.e., an edge with the

same offline neighbor that gets matched first), but the copy in M2 has no chance of

being matched.

To correct for this imbalance, we make an additional modification to the vector

x∗ before applying DR[x∗, k]. The rest of the algorithm is exactly the same. Let η

be a parameter to be optimized in the analysis. For all large edges ` ∈ L such that

x∗(`) > 1/2, we set x̃∗(`) = x∗(`) + η. For all small edges s ∈ S which are adjacent

to some large edge, let ` ∈ L be the largest edge adjacent to s such that x∗(`) > 1/2.

Note that it is possible for s to have two large neighbors, but we only care about

the larger of the two. We set x̃∗(s) = x∗(s)
(

1−x̃∗(`)
1−x∗(`)

)
.

In other words, we increase the values of large edges while ensuring that for all

w ∈ U∪V , x∗(w) ≤ 1 by reducing the values of neighboring small edges proportional

to their original values. Note that it is not possible for two large edges to be
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adjacent since they must both have x∗(e) > 1/2. For all other small edges which are

not adjacent to any large edges, we leave their values unchanged. We then apply

DR[x∗, 2] to this new vector, multiplying by 2 and applying dependent rounding as

before. Algorithm 2 formally describes the algorithm.

Algorithm 2: EW(η)

1 Construct and solve the benchmark LP (3.1) for the input instance.

2 Let x∗ be an optimal fractional solution vector.

3 For all edges e ∈ E with x∗(e) > 1/2 let x̃∗(`) = x∗(`) + η

4 For all edges e ∈ E with x∗(e) ≤ 1/2 do the following. Let ` ∈ L be the

largest edge adjacent to e such that x∗(`) > 1/2. Let

x̃∗(e) = x∗(e)
(

1−x̃∗(`)
1−x∗(`)

)
.

5 Invoke DR[x̃, 2] to get a random integral vector F.

6 Run steps (2)-(6) of Algorithm 1

3.7.0.1 Analysis

Theorem 1. For edge-weighted online stochastic matching with integral arrival

rates, EW(0.0142) achieves a competitive ratio of at least 0.7.

Proof. As in the warm-up analysis, we’ll consider large and small edges separately

• Scenario 1: 0 ≤ x∗(s) ≤ 1
2
:

Here we have two cases

– Case 1: s is not adjacent to any large edges.
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In this case, the analysis is the same as Case 1 in the warm-up analysis.

Thus, the probability that edge s is added to the matching is 0.729x∗(e).

– Case 2: s is adjacent to some large edge `.

For this case, let x∗(`) be the value of the largest neighboring edge in the

original LP solution. Then the probability that edge s is added to the

matching is

x∗(s)

(
1− (x∗(`) + η)

1− x∗(`)

)
(0.1484 + 0.5803).

This follows from Lemma 2; in particular, the first two terms are the

result of how we set x̃(s) in the algorithm, while the two numbers, 0.1484

and 0.5803, are the probabilities that s is matched when it is in M2 and

M1, respectively. Note that for x∗(`) ∈ [0, 1) this is a decreasing function

in x∗(`). So the worst case is when x∗(`) = 1−1/e (due to third constraint

in LP (3.1)) Thus, the probability that edge s is added to the matching

is

x∗(s)

(
1− (1− 1/e + η)

1− (1− 1/e)

)
(0.1484 + 0.5803).

Since η = 0.0142, this evaluates to,

0.701x∗(s). (3.2)

• 1
2
< x∗(`) ≤ 1 − 1

e
: Here, the probability that ` is added to the matching is,

[1− (x∗(`) + η)][P1 +P2] + [2(x∗(`) + η)− 1]Pb. This can re-arranged to obtain

(P1 + P2)(1− η) + (2η − 1)Pb + x∗(`)[2Pb − P1 − P2]. (3.3)
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Since η = 0.0142 using Lemma 2 we have (P1+P2)(1−η)+(2η−1)Pb = 0.1048.

Similarly, using Lemma 2 we have 2Pb − P1 − P2 = 0.535. Thus, Eq. (3.3)

simplifies to,

0.1048 + x∗(`)0.535 (3.4)

We can write Eq. (3.4) as x∗(`)[0.1048/x∗(`) + 0.535]. Note that 1
2
< x∗(`) ≤

1− 1
e
. Thus, Eq. (3.4) can be lower-bounded by

0.701x∗(`). (3.5)

Thus combining Eq. (3.2) and (3.5) with Lemma 3 we get a competitive ratio

of 0.7.

We now show that the chosen value of η = 0.0142 ensures that both x̃∗(`)

and x̃∗(s) are less than 1 after modification. Since x∗(`) ≤ 1 − 1/e we have that

x∗(`) + η ≤ 1 − 1/e + 0.0142 ≤ 1. Note that x∗(`) ≥ 1/2. Hence, the modified

value x̃∗(s) is always less than or equal to the original value, since
(

1−(x∗(`)+η)
1−x∗(`)

)
is decreasing in the range x∗(`) ∈ [1/2, 1 − 1/e] and has a value less than 0.98 at

x∗(`) = 1/2.

3.8 Conclusion

In this chapter, we considered the Online (Edge) Weighted Matching problem

under the known product distribution arrival assumption. The key contribution

is a new algorithm based on randomized (dependent) rounding schemes of Gandhi

et al. [92] that improves the competitive ratio to 0.701. For simplicity in exposition,

we describe a simpler algorithm in this thesis. In Brubach et al. [42], we give
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another algorithm which uses similar ideas and DR[x∗, 3] to obtain the best-known

competitive ratio of 0.705. The analysis is significantly involved with many more

cases and we refer the reader to the paper for more details.

All algorithms in prior work and the one described in this thesis fall under the

class of online algorithms known as non-adaptive algorithms. In other words, after

realizing part of the randomness in the input, the algorithm does not change it’s

strategy. It is an interesting open problem to consider adaptive algorithms for this

problem and understand if significant improvements to competitive ratios can be

made. This is called adaptivity gap in the literature Gupta et al. [98, 99]. The best

known lower-bound for this problem is 0.823 which holds even when all edge weights

are identical. Thus, the immediate open question is to bridge the gap between the

upper-bound of 0.705 and the lower-bound of 0.823. Adaptive algorithm is one

possible approach towards bridging this gap.
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Chapter 4: Extension 1: Online Weighted Matching with Reusable

Vertices

4.1 Introduction

In this chapter, we consider an extension of the Online Matching problem

where the offline vertices are reusable. Online Matching problems are motivated

by market design problems where agents on one side of a market are paired with

agents, contracts, or transactions on the other. In many of these applications such

as matching drivers to riders, jobs to servers, organs to patients the process is

dynamic where one side of the market arrives in an online fashion and is matched

sequentially to the other side. Moreover, in these applications the match has a

temporal component; after a certain period of time the offline agent is freed and

can be used for other matches. We motivate this problem using the example of

ride-share below.

Taxi Dispatching Services and Ride-Sharing Systems. Traditional taxi

services and rideshare systems like Uber and Didi Chuxing match drivers to would-

be riders Lee et al. [128], Lowalekar et al. [132], Tong et al. [176]. Here, the offline

Service Providers are different vehicle drivers. Once an online request (potential

rider) arrives, the system matches it to a nearby driver instantly such that the
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rider’s waiting time is minimized. In most cases, the driver will rejoin the system

and can be matched again once she finishes the service. Additionally, the arrival

rates of requests changes dramatically across the day. Consider the online arrivals

during peak hours and off-peak hours for example: the arrival rates in the former

case can be much larger than the latter.

Motivated by these applications, we consider the Online Matching with Reusable

Resources problem. As before we are given a weighted bipartite graph G = (U, V,E).

The vertex set U is available offline and at each time-step t ∈ [T ] a vertex v ∈ V

is sampled from a known product distribution. When a vertex v arrives, we have

to match it to one of the available vertices in U or drop it; this action is irrevo-

cable. The key difference is that the vertices in U are reusable. Once we assign

v to u, the vertex u will rejoin the system after Ce rounds with e = (u, v), where

Ce ∈ {0, 1, . . . , T} is an integral random variable with known distribution. In other

words, after Ce time-steps the vertex u becomes available for future matches. The

random variable Ce is called the occupation time of u w.r.t. e. The goal is to maxi-

mize the total weight of the successful matches at the end of T time-steps. Here we

make no assumption on the individual distributions Dt in the product distribution

and can vary (adversarially) with time.

4.2 Our Contributions

The main contribution in this chapter is to define the Online Weighted Match-

ing with Reusable Vertices problem and provide a new algorithm that has tight

35



theoretical guarantees. This model capture a wide range of real-world applications

related to online scheduling, organ allocation, rideshare dispatch, among others. We

extend the ideas from the previous chapter to design a new algorithm that achieves

a competitive ratio of 1
2
− ε for any given constant ε > 0. The key new ingredi-

ent in the algorithm is the notion of attenuation — using Monte-Carlo simulations

to approximately estimate the probability of certain safe event and weight actions

inversely proportional to this estimate. We also show that our algorithm is nearly

optimal among all non-adaptive algorithms.

4.3 Main Model

In this section, we present a formal statement of our main model. Consider

a weighted bipartite graph G = (U, V,E) where U and V represent the offline and

online vertices respectively. Let w : E → R+ denote the weight function that

assigns a weight to every edge in the graph. We have a finite time horizon T (known

beforehand) and for each time t ∈ [T ], a vertex v is sampled (we use the term v

arrives) from a known probability distribution {pt(v)} such that
∑

v∈V pt(v) ≤ 11

This sample is independent for each round t. The expected number of times v arrives

across the T rounds,
∑

t∈[T ] pt(v), is called the arrival rate for vertex v. Once a vertex

v arrives, we need to make an irrevocable decision immediately: either reject v or

assign v to one of its neighbors in U . For each u ∈ U , once it is assigned to some

v, it becomes unavailable for Ce rounds with e = (u, v), and subsequently rejoins

the system. Here Ce is an integral random variable taking values in {0, 1, . . . , T}
1Thus, with probability 1−

∑
v∈V pt(v), none of the vertices from V will arrive at t.
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with the distribution known in advance. The goal is to design an online assignment

policy such that the total (expected) weight of the assignments made is maximized.

In this work we assume that |V | � |U | and T � 1.

4.4 LP benchmark

We use the following LP to upper-bound the optimal online algorithm. The

linear program has variables xt(e) for every e ∈ E and t ∈ [T ].

maximize
∑

t∈[T ]

∑
e∈E w(e) xt(e) such that∑

e∈δ(u) xt(e) ≤ pt(v) ∀u ∈ U, t ∈ [T ]∑
t′<t

∑
e∈δ(u) xt′(e) Pr[Ce > t− t′] +

∑
e∈δ(u) xt(e) ≤ 1 ∀u ∈ U, t ∈ [T ]

0 ≤ xt(e) ≤ 1 ∀e ∈ E, t ∈ [T ]

(4.1)

As before we have the following Lemma which states that the optimal value

of the LP is an upper-bound to the optimal online algorithm.

Lemma 4. Let {x∗t}t∈[T ] denote an optimal solution to LP (4.1). Then we have

OPT ≤
∑

t∈[T ]

∑
e∈E w(e)x∗t (e).

Proof. The proof of this is similar to that of Lemma 1. Let Yt(e) denote an indicator

random variable to denote if an edge e = (u, v) was matched at time t in the

optimal solution for an online sequence A. Let yt(e) := EA[Yt(e)] for every t ∈ [T ]

and e ∈ E. We will now show that the vector y := (yt(e))e∈E,t∈[T ] is a feasible

solution to the LP (4.3). Consider a vertex u ∈ U . Let Rt(v) denote the indicator
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random variable to denote if vertex v arrived at time t in A. Thus,
∑

e∈δ(u) Yt(e) ≤

Rt(v). Taking expectation on both sides and using linearity of expectation we get∑
e∈δ(u) yt(e) ≤ pt(v). This shows that y is feasible to the first constraint. Since

Yt(e) is an indicator random variable we have 0 ≤ Yt(e) ≤ 1. Taking expectation,

we obtain 0 ≤ yt(e) ≤ 1 and thus y is feasible to the third constraint. We will now

show that it is feasible to the second constraint. Consider a u ∈ U and time-step

t ∈ [T ]. u is either matched at some time-step t′ < t and is not yet available at t or

that u got matched at time t. Let I[Ce > t−t′] denote the indicator for the re-appear

time of edge e to be larger than t − t′. Thus, we have
∑

t′<t

∑
e∈δ(u) Yt′(e)I[Ce >

t− t′] +
∑

e∈δ(u) Yt(e) ≤ 1. Taking expectation on both sides and using linearity of

expectation we get that
∑

t′<t

∑
e∈δ(u) yt′(e) Pr[Ce > t− t′] +

∑
e∈δ(u) yt(e) ≤ 1. The

expected weight of the optimal solution is thus EA[
∑

t∈[T ]

∑
e∈E w(e)Yt(e)] which is

equal to
∑

t∈[T ]

∑
e∈E w(e)yt(e) from linearity of expectation. Since y is feasible to

the LP, the optimal value to LP (4.3) is at least as large as the expected optimal

solution.

In fact, it is suffices to have a finite sample estimate of Pr[Ce > t− t′] for every

edge e ∈ E. In particular, we have the following Lemma. The proof follows from

the fact that {xt}t∈[T ] is scaled down by a factor (1 + δ) and hence the objective is

scaled down by a factor (1 + δ).

Lemma 5. Suppose for some δ ≥ 0, we have an estimate f(e, y) of Pr[Ce > y] for

all edges e and y >= 0 , where f(e, y)/Pr[Ce > y] always lies in [1/(1 + δ), 1 + δ].

Then, by using f(e, t − t′) in the LP instead of Pr[Ce > t − t′] and scaling down
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the resultant vector {xt}t∈[T ] by (1 + δ), we only get a further loss of (1 + δ) in the

competitive ratio.

4.5 1/2− ε-competitive algorithm

The main idea of the algorithm is as follows. Let {x∗t}t∈[T ] denote an optimal

solution to LP (4.1). Suppose we aim to develop an online algorithm achieving a

ratio of γ ∈ [0, 1]. Consider an assignment e = (u, v) when some v arrived at time

t. Let SFt(e) be the event that e is safe at t (i.e., u is available at t). By using

Monte-Carlo simulations on the algorithm’s strategy up to t, we can get an estimate

of Pr[SFt(e)], denoted by βt(e), within an arbitrary small error. Therefore when

SFt(e) holds, we assign v to u with probability
x∗t (e)

pt(v)
γ

βt(e)
when v arrives, which leads

to the fact that e is assigned with probability exactly equal to γx∗t (e) unconditionally.

We call any strategy that satisfies γ ≤ βt(e) as valid. At the outset, this looks similar

to the Inverse Propensity Scoring (IPS) used in the multi-armed bandit literature

Auer et al. [24]. However, there is a key difference between IPS estimates and these

Monte-Carlo estimates. In the bandit literature, one usually scales the value by

the probability of playing an action, since this is the cost of observing only bandit

feedback. However, here we scale by a quantity that depends on the probability of

a certain event happening during the run of the algorithm, because of playing other

actions. The linear program gives a distribution over the edges assuming that all

the neighbors are available. Hence this scaling can be interpreted as the cost the

algorithm needs to incur when some neighbors are already matched.
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The above strategy of using Monte-Carlo simulations to weight the probability,

called simulation-based attenuation, has been used previously for other problems,

such as stochastic knapsack Ma [133] and stochastic matching Adamczyk et al. [2].

Throughout the analysis, we assume that we know the exact value of βt(e) :=

Pr[SFt(e)] for all t and e. This is because, for any given accuracy ε > 0 using

Θ( 1
Pr[SFt(e)]ε2

· log(1
δ
)) samples, we can ensure that βt(e) ∈

[
Pr[SFt(e)]

1
1+ε

,Pr[SFt(e)]
]

with probability at least 1− δ, via a standard Chernoff-bound argument. Thus, this

leads to a loss of at most (1 − Θ(ε)) multiplicative factor in the competitive ratio,

which is negligible when ε = o(1)2. Hence, ignoring it leads to a cleaner presentation.

Algorithm 3 gives a formal description of our algorithm.

Algorithm 3: Simulation-based algorithm: ALG-REUSE(γ)

1 Solve LP (4.1) to obtain optimal solution {x∗t}.

2 For each time t, let vt denote the request arriving at time t.

3 If δt(vt) = ∅, then reject vt; otherwise choose e ∈ δt(vt) with prob.
x∗t (e)

pt(vt)
· γ
βt(e)

where e = (u, v).

First, we show that when γ = 1
2
, Algorithm 3 is a valid strategy (i.e., γ ≤ βt(e)

for every t ∈ [T ], e ∈ Et).

Lemma 6. For every t ∈ [T ] and e ∈ Et, we have βt(e) ≥ 1
2
.

Proof. We prove this by induction on t. The base case is when t = 1. In this case

we have βt(e) = 1 for all e = (u, ∗) trivially and thus, we are done.

2o(1) is a vanishing term when both Ce and T/Ce are sufficiently large
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Consider the inductive case. For all t′ < t, assume that βt′(e) ≥ 1
2
. Consider

time t and a given edge e = (u, vt). Assignment e is unsafe at t iff u is already

assigned to some v′ at t′ < t and that the assignment e′ = (u, v′) makes u unavailable

at time t. Therefore we have,

1− βt(e) = 1− Pr[SFt(e)] =
∑
t′<t

∑
e∈δt(u)

x∗t′(e)

2
Pr[Ce > t− t′]. (4.2)

Using the constraints of the LP (4.1) with Eq. (4.2) we have,

βt(e) = 1−
∑
t′<t

∑
e∈δt(u)

x∗t′(e)

2
Pr[Ce > t− t′] ≥ 1

2
+

1

2

∑
e∈δt(u)

x∗t (e) ≥
1

2
.

Hence we have
∑

e∈δt(vt)
x∗t (e)

pt(vt)
· γ
βt(e)
≤
∑

e∈δt(vt)
x∗t (e)

pt(vt)
≤ 1 and thus we are done.

We will now prove that the competitive ratio of Algorithm 3 is at least 1
2
−o(1).

In particular, we prove the following theorem.

Theorem 2. Algorithm ALG-REUSE(1
2
) achieves a competitive ratio of 1

2
− o(1).

Proof. Consider any edge e in the offline-graph. Using Lemma 6 and the definition

of βt(e) we have that the probability that this assignment is chosen in the T rounds

is at least
∑

t∈[T ] x
∗
t (e)γ(1−o(1)). Thus, combining this with Lemma 3 we have that

the competitive ratio is at least γ(1− o(1)) = 1
2
(1− o(1)).

4.6 Lower-bounds

In this section we show that the analysis in the previous section is tight. In

particular, any algorithm that uses the optimal solution of LP (4.1) as a guide for

the online actions cannot get a competitive ratio better than 1
2

+o(1). In particular,

we show that the worst-case occurs for the following instance.

41



Construction 1. Consider a complete bipartite graph G = (U, V,E) where |U | = K,

|V | = T 2. Let pt(v) = 1
T 2 for each v ∈ V and t ∈ [T ]. In other words, in each round

t ∈ [T ], each v ∈ V is sampled uniformly. For each e, let Ce be the same value K,

which implies that any u ∈ U will be unavailable for K rounds after an assignment.

All assignments have the same weight ( i.e., w(e) = 1 for all e ∈ E).

Theorem 3. No non-adaptive algorithm that uses the optimal solution of LP (4.1)

as a guide for online actions, can achieve a competitive ratio better than 1
2

+ o(1)

on the instance in Construction 1.

Proof. First, split the T rounds in the online phase into T − K + 1 consecutive

windows W = {W`}`∈[T−K+1] such that W` = {`, `+ 1, . . . , `+K − 1} for each 1 ≤

` ≤ T −K+ 1. Consider the benchmark LP (4.1) for the instance in construction 1.

It can be written as follows.

maximize
∑

t∈[T ]

∑
e∈E xt(e) such that∑

e∈δ(u) xt(e) ≤
1
T 2 ∀u ∈ U, t ∈ [T ]∑

t∈W`

∑
e∈δ(u) xt(e) ≤ 1 ∀u ∈ U, 1 ≤ ` ≤ T −K + 1

0 ≤ xt(e) ≤ 1 ∀e ∈ E, t ∈ [T ]

(4.3)

We can verify that an optimal solution to LP (4.3) is as follows: x∗t (e) =

1/(T 2K) for all e ∈ E and t ∈ [T ] with the optimal objective value of T . Consider

any optimal non-adaptive algorithm. The expected number of arrivals of any v ∈ V

after T steps is 1/T . Thus, for any non-adaptive algorithm ALG, it needs to specify

the allocation distribution Dv for each v during the first arrival. Consider a given
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non-adaptive algorithm; it can be described by a set of parameters {αu,v ∈ [0, 1]}

for each pair v ∈ V, u ∈ δ(v) with
∑

u∈δ(v) αu,v ≤ 1, for each v ∈ V . In other words,

the algorithm can be described by the probability that a v ∈ V will be assigned to

u ∈ U in the run of the algorithm.

Let βu :=
∑

v∈δ(u) αu,v ∗
1
T 2 , which is the probability that u is matched in each

round if it is safe at the beginning of that round, when running ALG. Hence,

∑
u∈U

βu =
∑
u∈U

∑
v∈δ(u)

αu,v ·
1

T 2
=
∑
v∈V

∑
u∈δ(v)

αu,v ·
1

T 2
≤ 1.

Consider a given u and the corresponding βu. Let γt(u) be the probability

that u is available at time t. Then the expected number of matches of u after the T

rounds is
∑

t∈[T ] βuγt(u). Then the variables γt(u) and βu satisfy a recurrence, given

by Lemma 7, at each time-step t ∈ [T ]

Lemma 7. ∀1 < t ≤ T , we have

γt(u) + βu
∑

t−K+1≤t′<t

γt′(u) = 1

Proof. When t = 1, this follows from the fact that u is safe at time t = 1. For

each time t > 1, let SFt(u) be the event that u is safe at time t and At(u) be the

event that u is matched at time t. In each window of K time slots, we have that

the events {SFt(u), At′(u), t −K + 1 ≤ t′ < t} are all mutually exclusive and that

together they cover the entire sample space. Therefore, we have,

1 = Pr[SFt(u)] +
∑

t−K+1≤t′<t

Pr[At′(u)]

= γt(u) + βu
∑

t−K+1≤t′<t

γt(u)
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Recall that the optimal value of the benchmark LP (4.3) is T . However, the

performance of ALG is
∑

u∈U
∑

t∈[T ] βuγt(u). Thus, the competitive ratio achieved

by ALG can be captured by the following maximization program.

maximize
∑
u∈U

∑
t∈[T ] βuγt(u)

T
such that∑

u∈U βu ≤ 1 ∀u ∈ U, t ∈ [T ]

γt(u) + βu
∑

t−K+1≤t′<t γt′(u) = 1∀1 < t ≤ T, u ∈ U

βu ≥ 0, γ1(u) = 1 ∀u ∈ U

(4.4)

We now prove the following Lemma about the optimal value of the pro-

gram (4.4). Theorem 3 follows directly from this lemma.

Lemma 8. The optimal value of the maximization program (4.4) is at most 1
2−1/K

+

o(1) when K = o(T ).

Proof. Consider any given vertex u ∈ U . From Lemma 7 we have that γt(u) +

βu
∑

t−K+1≤t′<t γt′(u) = 1 for all 1 ≤ t ≤ T . Summing both sides over t ∈ [T ], we

have the following.

(
1 + βu(K − 1)

)∑
t∈[T ] γt(u) =

T + βu(K − 1)γT (u) + βu(K − 2)γT−1(u) + · · ·+ βuγT−K+2(u)

≤ T +K − 1

Therefore we have,

∑
t∈[T ]

γt(u) ≤ T

1 + βu(K − 1)
+

K − 1

1 + βu(K − 1)
≤ T

1 + βu(K − 1)
+

1

βu
(4.5)
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Define Hu :=
∑

t∈[T ] βuγt(u). From Eq. (4.5), we have that Hu ≤ Tβu
1+βu(K−1)

+ 1.

Thus the objective value in the maximization program (4.4) can be upper-bounded

as follows. ∑
u∈U

∑
t∈[T ] βuγt(u)

T
=
∑
u∈U

Hu

T
≤
∑
u∈U

βu
1 + βu(K − 1)

+
K

T
.

Thus, the optimal value to the maximization program (4.4) can be upper

bounded by the following maximization program.{
max

∑
u∈U

βu
1 + βu(K − 1)

+
K

T
:
∑
u∈U

βu = 1, βu ≥ 0,∀u ∈ U

}

According to our assumption we have K = o(T ); thus, the second term eval-

uates to o(1). Let g(x) := x/(1 + x(K − 1)). For any K ≥ 2, g(x) is a concave

function. Thus, when maximizing g(x) subject to
∑

u∈U βu = 1, the maximizer will

be achieved when all βu = 1/K. The resultant value is 1
2−1/K

+ o(1).

Unconditional Hardness. Manshadi et al. [137] prove that for the online match-

ing problem under known distribution (but disposable offline vertices), no algorithm

can achieve a ratio better than 0.823. Since our setting generalizes this, their hard-

ness results directly apply to our problem as well.

4.7 Conclusion

In this work, we provide a model that captures the application of assignment

in ride-sharing platforms. One key aspect in our model is to consider the reusable

aspect of the offline resources. This helps in modeling many other important ap-

plications where agents enter and leave the system multiple times (e.g., ride-share,
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organ allocation and crowdsourcing markets). We provide an LP based algorithm

that achieves a tight competitive ratio of 1
2
−o(1). We supplement this with a lower-

bound for LP-based algorithms. In Chapter 6 we use this model to run experiments

on the New York yellow cabs taxi dataset to show the application of this model for

a real-world problem. We show that the proposed algorithms sometimes does better

than simple heuristics that are commonly employed.
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Chapter 5: Extension 2: Online Submodular Weighted Matching

5.1 Introduction

In this chapter, we consider another extension of the Online Weighted Match-

ing problem called the Online Submodular Matching Problem. In the online weighted

matching problem, each edge is associated with a weight and the goal of maximizing

the total weight captures the notion of maximizing the total relevance of the match.

In many applications, we also care about the diversity of the final matching along-

side the relevance. Ahmed et al. [15] considered a motivating example of matching

academic papers to potential reviewers: simply maximizing the relevance (the qual-

ity of each match) could potentially assign a paper to multiple scholars in a single

lab due to shared expertise, which is undesirable. Instead, we want to assign each

paper to relevant experts with diverse backgrounds to obtain comprehensive feed-

back. Maximizing diversity is of particular importance in various recommendation

systems, ranging from recommendations of new books and movies on eBay Chen

et al. [62] to returning search-engine queries Agrawal et al. [9]. A common strategy

to address diversity is to first formulate a specific objective (typically maximization

over a submodular function capturing the balance of diversity and relevance and

then design an efficient algorithm—typically a greedy one—to solve it (e.g., Ahmed
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et al. [15] and references within). Inspired by the wide range of applications we

propose the Online Submodular Matching problem and design algorithms that give

provable guarantees. We depart from the greedy paradigm of algorithms and use

tools from submodular optimization.

5.2 Our Contributions

Our contributions can be summarized as follows.We propose the Online Sub-

modular Bipartite Matching problem, which captures the balance between relevance

and diversity in the context of matching markets. We then provide a provably good

algorithm for this model. The algorithm is based on Contention Resolution schemes

(CRS, Chekuri et al. [61]) used in the offline submodular maximization literature.

The key algorithmic idea is to construct an offline guide based on using CRS on

the expected offline problem and use this guide in the online phase. Our algorithm

leverages useful properties of CRS from prior work to argue about the total expected

objective of the online algorithm.

5.3 Problem Model

Consider a given bipartite graph G = (U, V,E) where U and V represent the

offline and online vertices respectively. Additionally,. We have a finite time horizon

T (known beforehand) and for each time (or round) t ∈ [T ] := {1, 2, . . . , T}, at

most one vertex v is sampled—in which case we say v arrives—from a given known

probability distribution {p(v)}v∈V . The sampling process is independent across
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different times. As in chapter 3 we consider the case of integral arrival rates — thus

wlog the arrival rate of each vertex v ∈ V is 1. This implies that p(v) = 1
T

for

every vertex v ∈ V . When a vertex v arrives, we need to make an immediate and

irrevocable decision: either to reject v or assign v to one of its neighbors in U . Each

u has a unit capacity: it will be unavailable in the future upon being matched.1 We

are given a non-negative monotone submodular function f : 2E → R+ as input. Our

goal is to design an online matching algorithm such that E[f(M)] is maximized,

where M is the final (random) matching obtained.

Related model. One important direction in addressing diversity in online algo-

rithms has been via online convex programming. In particular, Agrawal and De-

vanur [10] considered the model of maximizing a concave function under convex

constraints. At each time-step a random vector is drawn from an unknown distribu-

tion and the goal is to satisfy a convex constraint in expectation. Our work differs

from theirs in multiple aspects. First, the offline problem of Agrawal and Devanur

[10] is poly-time solvable, while our problem even in the offline version has unknown

hardness (status unknown for both NP- and APX-hardness). Equivalence between

discrete and continuous functions exists for submodular minimization via the Lovász

extension. However, a similar continuous relaxation for submodular maximization is

NP-hard to evaluate2. Hence, it is unclear how one would use their model to address

our problem. Secondly, they consider the large budget regime while all matching

1The general case where each u has a given capacity B(u) can be reduced to this by creating

B(u) copies of u.
2e.g., Slide 26 in https://goo.gl/HAhqaZ
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type problems differ from allocation problems in that this assumption is not true (in

fact, the main challenge is small budgets). The other difference is that our “known

i.i.d.” gives algorithm design more power as compared to unknown distributions and

therefore helps obtain improved ratios rigorously. For example, the online matching

problem with linear objectives has been studied both in unknown distribution and

known i.i.d. models separately since it presents a natural trade-off—knowing more

information about the distribution and the competitive ratio. Based on applications,

one would make assumption one-way or the other.

Special cases. Our model generalizes some well-known problems in this literature.

Note that if the submodular function is just a linear function of the weights this

reduces to online weighted matching in Chapter 3. Our model can also capture the

Submodular Welfare Maximization (SWM) problem Kapralov et al. [114]. Given

an instance of SWM we can add polynomially many extra vertices and reduce it to

an instance of our problem. The SWM problem is defined as follows. We have n

vertices in U which are available offline. With each vertex u ∈ U we have a monotone

submodular function gu : 2V → R associated with it. When a vertex v arrives we

need to match v to one of its neighbors in U . At the end of the online phase, let

S1, S2, . . . , Sn be the set of vertices assigned to vertices 1, 2, . . . , n respectively. The

goal is to maximize the sum
∑

i∈[n]wi(Si).

Note that sum of submodular functions is a submodular function. Hence to

make the objective function of SWM fit our framework, we do the following. Let

E(u) denote the set of edges incident to u. Define a function g̃u : E(u) → R. For
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any subset S ⊂ E(u), we let g̃(S) := g(S(v)) where S(v) is the set of endpoints

of S in V . The non-trivial part to handle is that in SWM any vertex in U can

be matched multiple times, while in our setting we allow any U to be matched

exactly once. We can overcome this by creating additional vertices as follows. For

any u ∈ U , create |δ(u)| ∗ T copies. A copy, indexed by v ∈ δ(u) and t ∈ [T ] has

an edge only to v. Additionally, wlog we can enforce that at time t, an algorithm

can be matched to vertices whose copy is indexed by t (this doesn’t change the

optimal value). Therefore, we now have an instance with a submodular objective

and matching constraints.

Consider an arrival sequence τ . Let the optimal allocation in SWM under this

arrival be Sτ,1, Sτ,2, . . . , Sτ,n at times T1, T2, . . . , Tn. Then note that by considering

the edges (uSτ,i,Tτ,i , Sτ,i) yields the same value to the objective in the Online Sub-

modular Matching model. Additionally, the above argument also holds in the other

direction since there is a one-to-one mapping between the two optimal solutions.

5.4 Background on Submodular Optimization

Definition 5 (Submodular function). A function f : 2[n] → R+ on a ground-set of

elements [n] := {1, 2, . . . , n} is called submodular if for every A,B ⊆ [n], we have

that f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) and f(φ) = 0. Additionally, f is said to

be monotone if for every A ⊆ B ⊆ [n], we have that f(A) ≤ f(B).

For our algorithms, we assume a value-oracle access to a submodular function.

This means that, there is an oracle which on querying a subset T ⊆ [n], returns the
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value f(T ). The algorithm does not have access to f explicitly.

Examples. Some common examples of submodular functions include the coverage

function, piece-wise linear functions, budget-additive functions among others. In

our experiments section, we use the following two examples.

1. Coverage function. Given a universe U and g subsets A1, A2, . . . , Ag ⊆ U , the

function f(S) = | ∪i∈S Ai| is called the coverage function for any S ⊆ [g].

This can naturally be extended to the weighted case. Given a non-negative

weight function w : U → R+, then the weighted coverage function is defined

as f(S) = w(∪i∈SAi).

2. Budget-additive function. For a given total budget B and a set of weights

wi ≥ 0 on the elements [g] of universe U , for any subset S ⊆ U the budget-

additive function is defined as f(S) = min{
∑

i∈S wi, B}.

Definition 6 (Multilinear extension). The multilinear extension of a submodu-

lar function f is the continuous function F : [0, 1]n → R+ defined as F (x) :=∑
T⊆[n](

∏
k∈T x(k)

∏
k 6∈T (1− x(k)))f(T ).

Note that F (x) = f(x) for every x ∈ {0, 1}n. The multilinear extension is a

useful tool in maximization of submodular objectives. In particular, the above has

the following probabilistic interpretation. Let Rx ⊆ [n] be a random subset of items

where each item i ∈ [n] is added into Rx independently with probability xi. We

then have F (x) = E[f(Rx)].

We now describe the key theorem relating sub-modular functions to its multi-

linear extension. This theorem was proved in Bansal et al. [35] and was generalized
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to a procedure called contention resolution schemes (CRS) by Chekuri et al. [61].

In this work, we only require the following theorem, but use the term CRS to refer

to the following theorem.

Theorem 4 (Bansal et al. [35]). Let f be a non-negative monotone submodular

function over E with |E| = m. Given a fractional vector x ∈ [0, 1]m, let X =

(X(e))e∈E be a random binary vector such that each X(e) is a Bernoulli random

variable with mean x(e). Suppose Z ≤ X is another random binary vector satisfying

the following properties (1) & (2) for some α > 0. Then we have that E[f(Z)] ≥

αE[f(X)].

1. Marginal Property: Pr[Z(e) = 1|X(e) = 1] ≥ α.

2. Monotonicity Property: Pr[Z(e) = 1|X = a] ≥ Pr[Z(e) = 1|X = b],

∀a ≤ b ∈ {0, 1}m,∀e ∈ support(a) := {e′ : a(e′) = 1}.

By definition of the multilinear extension we have that E[f(X)] = F (x). Thus

the theorem can be viewed as conditions when “linearity of expectation” can be

applied to F .

5.5 Related Works in Submodular Optimization

The offline version of our problem is the well-studied “maximizing a monotone

submodular function subject to a bipartite matching polytope constraint” problem.

More generally, the constraint set can be viewed as an intersection of two partition

matroids. The general area of submodular maximization is well studied; here, we
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only survey algorithmic advances related to maximization of a monotone submodular

function subject to various constraints. The classical work of Nemhauser et al. [151]

showed that the natural greedy algorithm achieves an (1−1/e)-approximation under

a cardinality constraint, which is optimal in the value oracle model assuming P 6=

NP Nemhauser and Wolsey [150]. Under a general matroid constraint, Calinescu

et al. [52] gave an algorithm achieving the optimal ratio of 1−1/e (in the value oracle

model defined in Section 5.4) using the pipage rounding technique. Lee et al. [129]

considered the constraint case of k matroids with k ≥ 2 and presented a local-search

based algorithm. Sarpatwar et al. [166] studied the case of intersection of k matroids

and a single knapsack constraint and gave a 1−e−(k+1)

k+1
-approximation algorithm for

any k ≥ 1. Recently a series of works has considered submodular maximization in

the online setting. In particular, Buchbinder et al. [50] and Chan et al. [57] studied

online submodular maximization in the adversarial arrival order with preemption:

on arrival of an item, we should decide whether to accept it or not and possibly

rejecting a previously accepted item. In this work, we do not allow preemption but

consider a more flexible arrival assumption (i.e., known i.i.d.). This makes the

problem tractable and admits algorithms with non-trivial competitive ratios. Apart

from the offline and online models, submodular maximization has received much

attention in other models due to its applications in summarization Tschiatschek

et al. [180], data subset selection and active learning Wei et al. [186], and diverse

summarization Mirzasoleiman et al. [143], to name a few. It has been studied

in the streaming Badanidiyuru et al. [32], Mirzasoleiman et al. [146], distributed

Mirzasoleiman et al. [144, 145] and stochastic Karimi et al. [115], Stan et al. [171]
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settings.

5.6 Mathematical Program to Upper-bound OPT

We use the following mathematical program to upper-bound OPT. This can-

not be solved exactly in polynomial time but can be approximated to a factor of

1− 1/e efficiently (Adamczyk et al. [3], Calinescu et al. [52]). Let F : [0, 1]m → R+

be the multilinear extension of f . Consider the following mathematical program.

maximize F (x) such that∑
e∈δ(v) x(e) ≤ r(v) ∀v ∈ V∑
e∈δ(u) x(e) ≤ 1 ∀u ∈ U

0 ≤ x(e) ≤ 1 ∀e ∈ E

(5.1)

Lemma 9. There is an efficient algorithm (running in polynomial time) which re-

turns a feasible solution x∗ to the program (5.1) such that F (x∗) ≥
(
1− 1

e

)
E[OPT],

where E[OPT] is the offline optimal value.

Proof. First, it is easy to see that the constraint set (denoted by P) in LP (5.1) is

downward closed. In other words, if x is a feasible solution, then (1− ε)x for every

0 ≤ ε ≤ 1 is also a feasible solution. Define f+(y) to be the optimal solution of the

following program.

f+(y) := max

{∑
A⊆E

αAf(A) :
∑
A⊆E

αA ≤ 1;αA ≥ 0;∀e ∈ E
∑
A:e∈A

αA ≤ y(e)

}
(5.2)

Using Lemma 6 in Adamczyk et al. [3] we have that the continuous greedy

algorithm of Calinescu et al. [52] yields a feasible solution x∗ such that F (x∗) ≥
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(1 − 1/e) maxy∈P f
+(y). As noted in Adamczyk et al. [3], for any given y ∈ P ,

f+(y) is the maximum value of E[f(R)] over all possible random sets R such that

Pr[e ∈ R] ≤ y(e) for each e. Thus, this implies that maxy∈P f
+(y) is an upper

bound of the offline optimal. This proves that F (x∗) ≥ (1 − 1/e) maxy∈P f
+(y) ≥

(1− 1/e)E[OPT].

5.7 0.125-competitive Algorithm

We present an algorithm for the Online Submodular Matching problem that

achieves a competitive ratio of at least 0.125. The central idea is as follows. We first

start with an approximately optimal solution x∗ to the mathematical program (5.1).

We then obtain Rx∗ , which is obtained by independently sampling each edge e ∈ E

with probability x∗(e). Let X ∈ {0, 1}m be the indicator vector corresponding to

Rx∗ such that X(e) = 1 iff e ∈ Rx∗ . Let EX(v) = {e : e ∈ δ(v), X(e) = 1}

and EX(u) = {e : e ∈ δ(u), X(e) = 1} be the set of sampled edges incident to u

and v respectively. Now we obtain another random vector Y ∈ {0, 1}m from X by

uniformly sampling an edge from EX(u) for each u ∈ U (the sampling process is

independent across different u). We then use both X and Y to guide the online

phase. Algorithm 4 describes this algorithm formally.

We now prove the following theorem about the performance of this algorithm.

In particular, we prove the following theorem.

Theorem 5. The algorithm CR-ALG achieves a competitive ratio of at least 1
2
(1−

e−1/2)(1− 1/e) for Online Submodular Matching problem with integral arrival rates.
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Algorithm 4: A CR-based algorithm (CR-ALG)

Offline Phase:

1 Approximately solve the program (5.1) using the continuous greedy of

Calinescu et al. [52]. Let x∗ = (x(e)∗)e∈E be the approximate solution with

F (x∗) ≥ (1− 1/e)E[OPT].

2 Independently sample each edge with probability x∗(e). Let

X = (X(e))e∈E ∈ {0, 1}m be the resultant indicator vector.

3 For each w ∈ U ∪ V , let EX(w) := {e : e ∈ δ(w), X(e) = 1} be the set of

sampled edges incident to w. Sample one edge uniformly at random from

EX(u) for each u if EX(u) 6= ∅. Let Y ≤ X be the indicator vector of the

edges chosen after both the sampling processes.

Online Phase:

4 When v ∈ V arrives at time t ∈ [T ], sample an edge e uniformly from EX(v).

Match v iff Y (e) = 1 and e = (u, v) is safe at t (i.e., u is available); skip it

otherwise.

Proof. Let Z = (Z(e))e∈E be the indicator vector for any e ∈ E being matched

in Algorithm CR-ALG. Let X be as defined in Theorem 4 with x = x∗ where

x∗ is the approximate optimal solution to the offline program. We show that Z

satisfies the two properties stated in Theorem 4 with α = 1
2
(1 − e−0.5). Hence, we

have that E[f(Z)] ≥ αE[f(X)]. From Lemma 9 we have that E[f(X)] = F (x∗) ≥

(1− 1/e)E[OPT]. Combining these two facts proves Theorem 5.

We now show that Z satisfies the two properties stated in Theorem 4 with

α = 1
2
(1− e−0.5). To prove this, we first prove the following Lemma.
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Lemma 10. Consider an edge e = (u, v) with X(e) = 1. Let |EX(u)| = ku and

|EX(v)| = kv, where ku and kv are the number of edges incident to u and v in the

sub-graph induced by X, respectively. Then,

Pr[Z(e) = 1 | X(e) = 1, |EX(u)| = ku, |EX(v)| = kv] ≥
1

ku

(
1− exp

(
− 1

kv

))
. (5.3)

Proof. A sufficient condition for Z(e) = 1 to occur given X(e) = 1, |EX(u)| =

ku, |EX(v)| = kv is that Y (e) = 1 in this conditional space and that Z(e) = 1 given

that Y (e) = 1. Thus, we have

Pr[Z(e) = 1 | X(e) = 1, |EX(u)| = ku, |EX(v)| = kv]

≥ Pr[Y (e) = 1 | X(e) = 1, |EX(u)| = ku]

∗ Pr[Z(e) = 1 | Y (e) = 1, |EX(v)| = kv, |EX(u)| = ku]. (5.4)

Since Y (e) = 1 is set uniformly for every edge e ∈ EX(u) we have that

Pr[Y (e) = 1 | X(e) = 1, |EX(u)| = ku] =
1

ku
. (5.5)

We now show that the following holds.

Pr[Z(e) = 1 | Y (e) = 1, |EX(v)| = kv, |EX(u)| = ku] ≥
∑
t∈[T ]

1

T

1

kv

(
1− 1

T · kv

)t−1

.

(5.6)

Consider a given e = (u, v) with Y (e) = 1. We compute the probability that u is

safe. At any time t ∈ [T ], the probability that a vertex u is matched is at most

1
kvT

(i.e., the probability that a neighbor v of u arrives in this time-step). Thus,

the probability that u is safe is at least
(

1− 1
Tkv

)t−1

. Thus, the probability that

e = (u, v) is matched in the T time-steps is at least
∑

t∈[T ]
1
T

1
kv

(
1− 1

T ·kv

)t−1

.
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Plugging equations (5.5) and (5.6) back into Eq. (5.4) we get,

Pr[Z(e) = 1 | X(e) = 1, |EX(u)| = ku, |EX(v)| = kv]

≥ 1

ku

T∑
t=1

1

T

1

kv

(
1− 1

T · kv

)t−1

≥ 1

ku

(
1− exp

(
− 1

kv

))
.

Given Lemma 10, we are now ready to prove the two properties. First, we

show that the Marginal Property holds with α = (1− e−0.5). Taking expectation

over the random sets |EX(u)| and |EX(v)|, Eq. (5.3) in Lemma 10 becomes,

Pr[Ze = 1|Xe = 1] ≥ Eku,kv
[

1
ku

(
1− exp

(
− 1

kv

))]
(5.7)

Since 1
ku

and
(

1 − exp
(
− 1

kv

))
, are convex functions in ku and kv by Jensen’s

inequality, this evaluates to,

Eku,kv
[ 1

ku

(
1− exp

(
− 1

kv

))]
≥ 1

E[|EX(u)|]

(
1− exp

(
− 1

E(|EX(v)|)
))
. (5.8)

From construction we have, E[|EX(u)|] = 1+
∑

e′∈E(u),e′ 6=e x
∗(e′) ≤ 2. Likewise,

we have E[|EX(v)|] = 1 +
∑

e′∈E(v),e′ 6=e x
∗(e′) ≤ r(v) = 2, since x∗ = (x∗(e))e∈E is

feasible to the mathematical program (5.1). Thus, the RHS in Eq. (5.8) can be

lower-bounded by

1

E[|EX(u)|]

(
1− exp

(
− 1

E(|EX(v)|)
))
≥ 1

2

(
1− e−1/2

)
(:= α). (5.9)

Combining Eq. (5.9) and (5.7) proves the marginal property.

The Monotonicity Property follows from combining the fact that 1
ku

and(
1−exp

(
− 1
kv

))
are decreasing functions in ku and kv respectively and Eq. (5.3).
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5.8 Conclusion

In this chapter, we proposed a new model, Online Submodular bipartite match-

ing, which effectively captures notions such as relevance and diversity in matching

markets. Many applications such as advertising, hiring diverse candidates, recom-

mending movies or songs naturally fit within this framework. We propose an algo-

rithm based on contention-resolution schemes and prove theoretical guarantees on

their performance. In Dickerson et al. [78], we propose another algorithm that has an

improved competitive ratio in the special case when |U | = o(
√
T ) and T →∞. For

this special case, this algorithm achieves a competitive ratio of (1−1/e)2. Dickerson

et al. [78] also has initial numerical experiments on the MovieLens dataset Harper

and Konstan [103] which validates the theoretical results.
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Chapter 6: Rideshare: Empirical Evaluation of Online Matching

6.1 Introduction

In this chapter, we consider a case-study of the Online Matching with Reusable

Vertices problem studied in Chapter 4 in the context of ride-share. We cast the prob-

lem of matching drivers to riders as an Online Matching problem. Using the publicly

available New York City yellow cabs dataset,1 which contains the trip records for

trips in Manhattan, Brooklyn, and Queens for the year 2013, we evaluate the perfor-

mance of the proposed algorithm and many natural heuristics. Further, we also show

that many of the assumptions made to help provable guarantees hold in practice.

6.2 Dataset and Assumptions

The dataset is split into 12 months. For each month we have numerous records

each corresponding to a single trip. Each record has the following structure. We

have an anonymized license number which is the primary key corresponding to a car.

For privacy purposes a long string is used as opposed to the actual license number.

We then have the time at which the trip was initiated, the time at which the trip

ended, and the total time of the trip in seconds. This is followed by the starting

1http://www.andresmh.com/nyctaxitrips/
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coordinates (i.e., latitude and longitude) of the trip and the destination coordinates

of the trip.

Assumptions. We make two assumptions specific to our experimental setup.

Firstly, we assume that every car starts and ends at the same location, for all

trips that it makes. Initially, we assign every car a location (potentially the same)

which corresponds to its docking position. On receiving a request, the car leaves

from this docking position to the point of pick-up, executes the trip and returns

to this docking position. Secondly, we assume that occupation time distributions

(OTD) associated with all matches are identically (and independently) distributed,

i.e., {Ce}e∈E follow the same distribution. Note that this is a much stronger assump-

tion than what we made in the model, and is completely inspired by the dataset

(see Section 6.4). We test our model on two specific distributions, namely a normal

distribution and the power-law distribution (see Figure 6.5). The docking position

of each car and parameters associated with each distribution are all learned from

the training dataset (described below in the Training discussion).

6.3 Experimental Setup

The cars represent the set of vertices U and the request types represent the set

of vertices V . We assign an edge between a car u ∈ U and request type v ∈ V iff the

request type v can be assigned to the car u. Given this modeling, the experimental

setup is as follows. We randomly select 30 cabs (each cab is denoted by u). We

discretize the Manhattan map into cells such that each cell is approximately 4 miles
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(increments of 0.15 degrees in latitude and longitude). For each pair of locations,

say (a, b), we create a request type v, which represents all trips with starting and

ending locations falling into a and b respectively. In our model, we have |U | = 30

and |V | ≈ 550 (variations depending on day to day requests with low variance).

We focus on the month of January 2013. We split the records into 31 parts, each

corresponding to a day of January. We choose a random set of 12 parts for training

purposes and use the remaining for testing purposes.

The edge weight w(e) on e = (u, v) (i.e., edge from a car u to type v) is set as a

function of two distances in our setup. The first is the trip distance (i.e., the distance

from the starting location to the ending location of v, denoted L1) while the second

is the docking distance (i.e., the distance from the docking position of u to the

starting/ending location of v, denoted L2). We set w(e) = max(L1−αL2, 0), where

α is a parameter capturing the subtle balance between the positive contribution

from the trip distance and negative contribution from the docking distance to the

final profit. We set α = 0.5 for the experiments. We consider each single day as the

time horizon and set the total number of rounds T = 24∗60
5

= 288 by discretizing

the 24-hour period into a time-step of 5 minutes. Throughout this section, we use

time-step and round interchangeably.

Training. We use the training dataset of 12 days to learn various parameters. As

for the arrival rates {pt(v)}t∈[T ],v∈V , we first count the total number of appearances

of each request type v at time-step t in the 12 parts (denote it by ct(v)). Then,

we set pt(v) = ct(v)/12 when we assume known adversarial arrivals (KAD) and
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p(v) = pt(v) = (c/12)/T (i.e., the arrival distributions are assumed the same across

all the time-steps for each v) when we assume i.i.d. arrivals (KIID). The estimation

procedure for the parameters of the two distributions for the occupation time is as

follows. We first compute the average number of seconds between two requests in

the dataset (note this was 5 minutes in the experimental setup). We then assume

that each time-step of our online process corresponds to a time-difference of this

average in seconds. We then compute the sample mean and sample variance of the

trip lengths (as number of seconds taken by the trip divided by five minutes) in the

12 parts. Hence we use the normal distribution obtained by this sample mean and

standard deviation as the distribution with which a car is unavailable. We assign

the docking position of each car to the location (in the discretized space) in which

the majority of the requests were initiated (i.e., starting location of a request) and

matched to this car.

6.4 Justifying The Two Important Model Assumptions

Known Adversarial Distributions. Figure 6.4 plots the number of arrivals of a

particular type at various times during the day. Notice the significant increase in the

number of requests in the middle of the day as opposed to the mornings and nights.

This justified our arrival assumption of KAD which assumes different arrival distri-

butions at different time-steps. Hence the LP (and the corresponding algorithm)

can exploit this vast difference in the arrival rates and potentially obtain improved

results compared to the assumption of Known Identical Independent Distributions
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(KIID). This is confirmed by our experimental results shown in Figures 6.1 and 6.2.

Identical Occupation Time Distribution. We assume each car will be available

again via an independent and identical random process regardless of the matches

it received. The validity of our assumptions can be seen in Figures 6.5 and 6.6,

where the x-axis represents the different occupation time and the y-axis represents

the corresponding number of requests in the dataset responsible for each occupation

time. It is clear that for most requests the occupation time is around 2-3 time-steps

and dropping drastically beyond that with a long tail. Figure 6.6 displays occupation

times for two representative (we chose two out of the many cars we plotted, at

random) cars in the dataset; we see that the distributions roughly coincide with

each other, suggesting that such distributions can be learned from historical data

and used as a guide for future matches.

6.5 Results

Inspired by the experimental setup by Tong et al. [176], we run five different

algorithms on our dataset. The first algorithm is the ALG-LP. In this algorithm,

when a request v arrives, we choose a neighbor u with probability x∗t (e)/pt(v) with

e = (u, v) if u is available. Here x∗t (e) is an optimal solution to the benchmark

LP (4.3) and pt(v) is the arrival rate of type v at time-step t. The second algorithm

is called ALG-SC-LP. Recall that Et(v) is the set of “safe” or available assignments

with respect to v when the type v arrives at t. Let xt(v) =
∑

e∈Et(v) x
∗
t (e). In

ALG-SC-LP, we sample a safe assignment for v with probability x∗t (e)/xt(v). The
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Figure 6.1: OTD is normal distribution under KIID

next two algorithms are heuristics oblivious to the underlying LP. Our third algo-

rithm is called GREEDY which is as follows. When a request v comes, match it

to the safe neighbor u with the highest edge weight. Our fourth algorithm is called

UR-ALG which chooses one of the safe neighbors uniformly at random. Finally,

we use a combination of LP-oblivious algorithm and LP-based algorithm called

ε-GREEDY. In this algorithm when a type v comes, with probability ε we use the

greedy choice and with probability 1− ε we use the optimal LP choice. In our algo-

rithm, we optimized the value of ε and set it to ε = 0.1. We summarize our results

in the following plots. Figures 6.1, 6.2, and 6.3 show the performance of the five

algorithms and OPT (optimal value of the benchmark LP) under the different as-
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Figure 6.2: OTD is normal distribution under KAD
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Figure 6.3: OTD is power law distribution under KAD
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Figure 6.4: The number of requests of a given type at various time-steps. x-axis:

time-step, y-aixs: number of requests

sumptions of the OTD (normal or power law) and online arrives (KIID or KAD). In

all three figures the x-axis represents test data-set number and the y-axis represents

average weight of matching.

Discussion. From the figures, it is clear that both the LP-based solutions, namely

ALG-LP and ALG-SC-LP, do better than choosing a free neighbor uniformly at

random. Additionally, with distributional assumptions the LP-based solutions out-

perform greedy algorithm as well. We would like to draw attention to a few inter-

esting details in these results. Firstly, compared to the LP optimal solution, our

LP-based algorithms have a competitive ratio in the range of 0.5 to 0.7. We believe
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Figure 6.5: Occupation time distribution of all cars. x-axis: number of time-steps,

y-axis: number of requests
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Figure 6.6: Occupation time distribution of two different cars. x-axis: number of

time-steps, y-axis: number of requests
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this is because of our experimental setup. In particular, we have that the rates are

high (> 0.1) only in a few time-steps while in all other time-steps the rates are very

close to 0. This means that it resembles the structure of the theoretical worst case

example we showed in Chapter 4. In future experiments, running our algorithms

during peak periods (where the request rates are significantly larger than 0) may

show that competitive ratios in those cases approach 1. Secondly, it is surprising

that our algorithm is fairly robust to the actual distributional assumption we made.

In particular, from Figures 6.2 and 6.3 it is clear that the difference between the

assumption of normal distribution versus power-law distribution for the unavailabil-

ity of cars is negligible. This is important since it might not be easy to learn the

exact distribution in many cases (e.g., cases where the sample complexity is high)

and this shows that a close approximation will still be as good.

72



Part II

Multi-armed Bandits
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Chapter 7: Bandits with Knapsacks

7.1 Introduction

We now focus on another model of sequential decision making paradigm, called

multi-armed bandits. Multi-armed bandits (MAB) is an elegant model for study-

ing the tradeoff between acquisition and usage of information, a.k.a. explore-exploit

tradeoff (Robbins [159], Thompson [175]). In each round an algorithm sequentially

chooses from a fixed set of alternatives (sometimes known as actions or arms), and

receives reward for the chosen action. Crucially, the algorithm does not have enough

information to answer all “counterfactual” questions about what would have hap-

pened if a different action was chosen in this round. Studied over many decades,

multi-armed bandits is a very active research area spanning computer science, op-

erations research, and economics (Bergemann and Välimäki [37], Bubeck and Cesa-

Bianchi [43], Cesa-Bianchi and Lugosi [54], Gittins et al. [94]).

In this work, we focus on bandit problems which feature supply or budget

constraints, as is the case in many realistic applications. For example, a seller who

experiments with prices may have a limited inventory, and a website optimizing ad

placement may be constrained by the advertisers’ budgets. This general problem

is called Bandits with Knapsacks (BwK) since, in this model, a bandit algorithm
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needs effectively to solve a knapsack problem (find an optimal packing of items into

a limited-size knapsack) or generalization thereof. The BwK model was introduced

in Badanidiyuru et al. [33] as a common generalization of numerous motivating

examples, ranging from dynamic pricing to ad allocation to repeated auctions to

network routing/scheduling. Various special cases with budget/supply constraints

were studied previously (e.g., Babaioff et al. [28], Badanidiyuru et al. [30], Besbes

and Zeevi [38], Combes et al. [67], Singla and Krause [169]).

In BwK, the algorithm is endowed with d ≥ 1 limited resources that are

consumed by the algorithm. In each round, the algorithm chooses an action (arm)

from a fixed set of K actions, and the outcome consists of a reward and consumption

of each resource; all are assumed to lie in [0, 1]. The algorithm observes bandit

feedback, i.e., only the outcome of the chosen arm. The algorithm stops at time

horizon T , or when the total consumption of some resource exceeds its budget. The

goal is to maximize the total reward, denoted REW.

7.1.1 Formal Model

We now describe the formal model. Figure 7.1 describes the protocol. There

are T rounds, K possible actions and d resources, indexed as [T ], [K], [d], respec-

tively. In each round t ∈ [T ], the algorithm chooses an action at ∈ [K] and receives

an outcome vector ot = (rt; ct,1 , . . . , ct,d) ∈ [0, 1]d+1, where rt is a reward and

ct,i is consumption of each resource i ∈ [d]. Each resource i is endowed with bud-

get Bi ≤ T . The game stops early, at some round τalg < T , when/if the total

consumption of any resource exceeds its budget. The algorithm’s objective is to
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maximize its total reward. Without loss of generality all budgets are the same:

B1 = B2 = . . . = Bd = B.1

The outcome vectors are chosen as follows. In each round t, the adversary

chooses the outcome matrix Mt ∈ [0, 1]K×(d+1), where rows correspond to actions.

The outcome vector ot is defined as the at-th row of this matrix, denoted Mt(at).

Only this row is revealed to the algorithm. The adversary is deterministic and

oblivious, meaning that the entire sequence M1 , . . . ,MT is chosen before round

1. A problem instance of BwK consists of (known) parameters (d,K, T,B), and the

(unknown) sequence M1 , . . . ,MT .

In the stochastic version of BwK, henceforth termed Stochastic BwK, each

outcome matrix Mt is chosen from some fixed but unknown distribution DBwK over

the outcome matrices. An instance of this problem consists of (known) parameters

(d,K, T,B), and the (unknown) distribution DBwK.

In the adversarial version of BwK, henceforth termed Adversarial BwK, the

outcome matrix Mt is chosen by an adversary. We use two versions of the adversary,

namely oblivious adversary who chooses all the outcome matrices before the start

of the game and adaptive adversary who chooses the outcome matrix at any time

t ∈ [T ] after observing the actions a1, a2, . . . , at−1 of the algorithm.

Following prior work Agrawal and Devanur [11], Badanidiyuru et al. [33], we

assume, w.l.o.g., that one of the resources is a dummy resource similar to time;

1To see that this is indeed w.l.o.g., for each resource i, divide all per-round consumptions ct,i

by Bi/B, where B := mini∈[d]Bi is the smallest budget. In the modified problem instance, all

consumptions still lie in [0, 1], and all the budgets are equal to B.
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formally, each action consumes B/T units of this resource per round (we only need

this for Stochastic BwK). Further, we posit that one of the actions is a null action,

which lets the algorithm skips a round: it has 0 reward and consumes 0 amount of

each resource other than the dummy resource.

Given: number of time-steps T , resources d, arms K and budget B.

In each round t ∈ [T ],

1. ALG selects an arm at ∈ [K].

2. Nature reveals reward rt(at) and consumptions {ci,t(at)}i∈[d].

3. ALG gets reward rt(at) and consumes ci,t(at) amount of each resource

i ∈ [d]

4. Stop if some resource consumed more than B amount.

Figure 7.1: Bandits with Knapsacks Protocol

7.1.2 Benchmarks

Let REW(ALG) =
∑

t∈[τalg] rt be the total reward of algorithm ALG in the

BwK problem. Our benchmark is the best fixed distribution (Definition 2), a distri-

bution over actions which maximizes E[REW(·)] for a particular problem instance.

The expected total reward of this distribution is denoted OPTFD.

For Stochastic BwK, one can compete with the best dynamic policy : an algo-

rithm that maximizes E[REW(·)] for a particular problem instance. Essentially, this
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algorithm knows the latent distribution DBwK over outcome matrices. Its expected

total reward is denoted OPTDP.

We argue that the best fixed distribution over arms is an appropriate bench-

mark for Adversarial BwK. First, consider the total expected reward of the best

dynamic policy, denote it OPTDP. (The best dynamic policy is the best algorithm,

in hindsight, that is allowed to switch arms arbitrarily across time-steps.) This is

the strongest possible benchmark, but it is too strong for Adversarial BwK. Indeed,

we show a simple example with just one resource (with budget B), where competi-

tive ratio against this benchmark is at least T
B2 for any algorithm. Second, consider

the total expected reward of the best fixed arm, denote it OPTFA. It is a traditional

benchmark in multi-armed bandits, but is uninteresting for Adversarial BwK. We

show that the competitive ratio is at least Ω(K) in the worst case, and this is

matched, in expectation, by a trivial algorithm that samples one arm at random

and sticks with it forever.

For Stochastic BwK, these three benchmarks are related as follows. The best

fixed distribution is still the main object of interest, as far as the design and analysis

of algorithms is concerned. However, all results – both ours and prior work – are

almost automatically extended to compete against the best dynamic policy. The

best fixed arm is a much weaker benchmark than the best fixed distribution: there

are simple examples when their expected reward differs by a factor of two, in multiple

special cases of interest (Badanidiyuru et al. [33]).
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7.2 Related Work

The literature on regret-minimizing online learning algorithms is vast; see

Bubeck and Cesa-Bianchi [43], Cesa-Bianchi and Lugosi [54], Hazan [104] for back-

ground. Most relevant are two algorithms for adversarial rewards/costs: Hedge

for full feedback (Freund and Schapire [89]), and EXP3 for bandit feedback (Auer

et al. [25]); both are based on the weighted majority algorithm from Littlestone and

Warmuth [130].

Stochastic BwK was introduced and optimally solved in Badanidiyuru et al.

[33]. Subsequent work extended these results to soft supply/budget constraints

(Agrawal and Devanur [11]), a more general notion of rewards2 (Agrawal and Deva-

nur [11]), combinatorial semi-bandits (Sankararaman and Slivkins [163]), and con-

textual bandits (Agrawal and Devanur [12], Agrawal et al. [14], Badanidiyuru et al.

[31]). Several special cases with budget/supply constraints were studied previously:

dynamic pricing (Babaioff et al. [28], Besbes and Zeevi [38, 39], Wang et al. [184]),

dynamic procurement (Badanidiyuru et al. [30], Singla and Krause [169]) (a version

of dynamic pricing where the algorithm is a buyer rather than a seller), dynamic

ad allocation (Combes et al. [67], Slivkins [170]), and a version with a single re-

source and unlimited time (Ding et al. [79], György et al. [100], Tran-Thanh et al.

[177, 178]). While all this work is on regret minimization, Guha and Munagala

[96], Gupta et al. [97] studied closely related Bayesian formulations.

2The total reward is determined by the time-averaged outcome vector, but can be an arbitrary

Lischitz-concave function thereof.
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Stochastic BwK was optimally solved using three different algorithms (Agrawal

and Devanur [11], Badanidiyuru et al. [33]), with extremely technical and delicate

analyses. All three algorithms involve inherently ‘stochastic’ techniques such as

“successive elimination” and “optimism under uncertainty”, and do not appear to

extend to the adversarial version. One of them, PrimalDualBwK from Badanidiyuru

et al. [33], is a primal-dual algorithm superficially similar to ours. Indeed, it decou-

ples into two online learning algorithms: a “primal” algorithm which chooses among

arms, and a “dual” algorithm similar to ours, which chooses among resources. How-

ever, the two algorithms are not playing a repeated game in any meaningful sense, let

alone a zero-sum game. The primal algorithm operates under a much richer input:

it takes the entire outcome vector for the chosen arm, as well as the “dual distribu-

tion” – the distribution over resources chosen by the dual algorithm. Further, the

primal algorithm is very problem-specific: it interprets the dual distribution as a

vector of costs over resources, and chooses arms with largest reward-to-cost ratios,

estimated using “optimism under uncertainty”.

Our approach to using regret minimization in games can be traced to Fre-

und and Schapire [87, 89] (see Ch. 6 in Schapire and Freund [167]), who showed

how a repeated zero-sum game played by two agents yields an approximate Nash

equilibrium.

This approach has been used as a unifying algorithmic framework for sev-

eral problems: boosting (Freund and Schapire [87]), linear programs (Arora et al.

[21]), maximum flow (Christiano et al. [66]), and convex optimization (Abernethy

and Wang [1], Wang and Abernethy [182]). While we use a result with the 1/
√
t
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convergence rate for the equilibrium property, recent literature obtains faster con-

vergence for cumulative payoffs (but not for the equilibrium property) under various

assumptions (e.g., Rakhlin and Sridharan [155], Syrgkanis et al. [172], Wei and Luo

[185]).

Repeated Lagrangian games, in conjunction with regret minimization in games,

have been used in a series of recent papers (Agarwal et al. [7], Hsu et al. [106], Kearns

et al. [118], Rogers et al. [160], Roth et al. [161, 162]), as an algorithmic tool to solve

convex optimization problems; application domains range from differential privacy

to algorithmic fairness to learning from revealed preferences. All these papers deal

with deterministic games (i.e., same game matrix in all rounds). Reframing the

problem in terms of repeated Lagrangian games is a key technical insight in this

work.

Most related to our paper are Roth et al. [161, 162], where a repeated La-

grangian game is used as a subroutine (the “inner loop”) in an online algorithm; the

other papers solve an offline problem. We depart from this prior work in several re-

spects: we use a stochastic game, we deal with some subtleties specific to Stochastic

BwK, and we provide a very different analysis for our main results on Adversarial

BwK, where we cannot rely on the standard machinery.

Online packing problems (e.g., Buchbinder and Naor [47], Devanur et al. [72],

see Buchbinder and Naor [48] for a survey) can be seen as a special case of Adversarial

BwK with a much more permissive feedback model: the algorithm observes full

feedback (the outcomes for all actions) before choosing an action. Online packing

subsumes various online matching problems, including the AdWords problem (Mehta
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et al. [141]) motivated by ad allocation (see Mehta [139] for a survey). While we

derive O(log T ) competitive ratio against OPTFD, online packing admits a similar

result against OPTDP.

Another related line of work concerns online convex optimization with con-

straints Chen and Giannakis [63], Chen et al. [64], Mahdavi et al. [134, 135], Neely

and Yu [149]. Their setting differs from ours in several important respects. First,

the action set is a convex subset of RK (and the algorithms rely on the power to

choose arbitrary actions in this set). In particular, there is no immediate way to

handle discrete action sets.3 Second, convexity/concavity is assumed on the rewards

and resource consumption. Third, in addition to bandit feedback, full feedback is

observed for the resource consumption, and (in all papers except Chen and Gian-

nakis [63]) one also observes either full feedback on rewards or the rewards gradient

around the chosen action. Fourth, their algorithm only needs to satisfy the budget

constraints at the time horizon (whereas in BwK the budget constraints hold for all

rounds). Fifth, their fixed-distribution benchmark is weaker than ours: essentially,

its time-averaged consumption must be small enough at each round t. Due to these

differences, their setting admits sublinear regret in the adversarial setting, whereas

we have a Ω(log T ) lower bound on the competitive ratio.

Logarithmic competitive ratios are quite common in prior work on approxima-

tion algorithms and online algorithms, e.g., in the context of the set cover problem

Johnson [112], Lovász [131], buy-at-bulk network design Awerbuch and Azar [26],

3Unless there is full feedback, in which case one can use a standard reduction whereby actions in

online convex optimization correspond to distributions over actions in a K-armed bandit problem.
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sparsest cut Arora et al. [20], and dial-a-ride problem Charikar and Raghavachari

[58], the online k-server problem Bansal et al. [34], online packing/covering problems

Azar et al. [27], online set cover Alon et al. [18], online network design Umboh [181],

and online paging Fiat et al. [85].

Simultaneous work. Two very recent (and yet unpublished) manuscripts have

come to our attention after the initial version of this paper has appeared on arxiv.org.

Rivera et al. Rivera et al. [158] consider online convex optimization with knapsacks

with full feedback. Focusing on the stochastic version, they design an algorithm

similar to LagrangeBwK, and derive a regret bound similar to ours, using a simi-

lar analysis. They also claim an extension to bandit feedback, without providing

any details (such as precise statement of Lemma 11 in terms of the regret property

(7.4)).

Rangi et al. Rangi et al. [157] consider Adversarial BwK in the special case

when there is only one constrained resource, including time. They attain sublinear

regret, i.e., a regret bound that is sublinear in T . They also assume a known lower

bound cmin > 0 on realized per-round consumption of each resource, and their regret

bound scales as 1/cmin. They also achieve polylog(T ) instance-dependent regret for

the stochastic version using the same algorithm (matching results from prior work on

the stochastic version). BwK with only one constrained resource (including time) is

a much easier problem, compared to the general case with multiple resources studied

in this paper, in the following sense. First, the single-resource version admits much

stronger performance guarantees (polylog(T ) vs.
√
T regret bounds for Stochastic
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BwK, and sublinear regret vs. approximation ratio for Adversarial BwK). Second,

the optimal all-knowing time-invariant policy is the best fixed arm, rather than the

best fixed distribution over arms.

7.3 Challenges and Our Contributions

7.3.1 Challenges

Adversarial BwK is a much harder problem compared to Stochastic BwK. The

new challenge is that the algorithm needs to decide how much budget to save for the

future, without being able to predict it. (It is also the essential challenge in online

packing problems, and it drives our lower bounds.) This challenge compounds the

ones already present in Stochastic BwK: that exploitation may be severely limited

by the resource consumption during exploration, that optimal per-round reward no

longer guarantees optimal total reward, and that the best fixed distribution over

arms may perform much better than the best fixed arm. Jointly, these challenges

amount to the following. An algorithm for Adversarial BwK must compete, during

any given time segment [1, τ ], with a distribution over arms that maximizes the total

reward on this time segment. However, this distribution may behave very differently,

in terms of expected per-round outcomes, compared to the optimal distribution for

some other time segment [1, τ ′].

In more concrete terms, let OPTFD be the total expected reward of the best

fixed distribution over arms. In Stochastic BwK (as well as in adversarial bandits)
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an algorithm can achieve sublinear regret: OPTFD−E[REW] = o(T ).4 In contrast,

in Adversarial BwK regret minimization is no longer possible, and we therefore are

primarily interested in the competitive ratio OPTFD /E[REW].

It is instructive to consider a simple example in which the competitive ratio

is at least 5
4
− o(1) for any algorithm. There are two arms and one resource with

budget T
2
. Arm 1 has zero rewards and zero consumption. Arm 2 has consumption

1 in each round, and offers reward 1
2

in each round of the first half-time (T
2

rounds).

In the second half-time, it offers either reward 1 in all rounds, or reward 0 in all

rounds. Thus, there are two problem instances that coincide for the first half-time

and differ in the second half-time. The algorithm needs to choose how much budget

to invest in the first half-time, without knowing what comes in the second. Any

choice leads to competitive ratio at least 5
4

on one of the problem instances.

Extending this idea, we prove an even stronger lower bound on the competitive

ratio:

OPTFD /E[REW] ≥ Ω(log T ). (7.1)

Like the simple example above, the lower-bounding construction involves only two

arms and only one resource, and forces the algorithm to make a huge commitment

without knowing the future.

4More specifically, one can achieve regret Õ(
√
KT ) for adversarial bandits (Auer et al. [25]),

as well as for Stochastic BwK if all budgets are Ω(T ) Badanidiyuru et al. [33]. One can achieve

sublinear regret for Stochastic BwK if all budgets are Ω(Tα), α ∈ (0, 1) (Badanidiyuru et al. [33]).
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7.3.2 Our Contributions

Our main result is an algorithm which nearly matches (7.1), achieving

E[REW] ≥ 1
O(log T )

(OPTFD−o(OPTFD)) . (7.2)

We put forward a new algorithm for BwK, called LagrangeBwK, that unifies the

stochastic and adversarial versions. It has a natural game-theoretic interpretation

for Stochastic BwK, and admits a simpler analysis compared to the prior work.

For Adversarial BwK, we use LagrangeBwK as a subroutine, though with a different

parameter and a different analysis, to derive two algorithms: a simple one that

achieves (7.2), and a more involved one that achieves the same competitive ratio with

high probability. Absent resource consumption, we recover the optimal Õ(
√
KT )

regret for adversarial bandits.

LagrangeBwK is based on a new perspective on Stochastic BwK. We reframe a

standard linear relaxation for Stochastic BwK in a way that gives rise to a repeated

zero-sum game, where the two players choose among arms and resources, respec-

tively, and the payoffs are given by the Lagrange function of the linear relaxation.

Our algorithm consists of two online learning algorithms playing this repeated game.

We analyze LagrangeBwK for Stochastic BwK, building on the tools from regret min-

imization in stochastic games, and achieve a near-optimal regret bound when the

optimal value and the budgets are Ω(T ).5

Discussion. LagrangeBwK has numerous favorable properties. As just discussed, it

5This regime is of primary importance in prior work, e.g., Besbes and Zeevi [38], Wang et al.

[184].
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is simple, unifying, modular, and yields strong performance guarantees in multiple

settings. It is the first “black-box reduction” from bandits to BwK: we take a bandit

algorithm and use it as a subroutine for BwK. This is a very natural algorithm for

the stochastic version once the single-shot game is set up; indeed, it is immediate

from prior work that the repeated game converges to the optimal distribution over

arms. Its regret analysis for Stochastic BwK is extremely clean. Compared to prior

work (Agrawal and Devanur [11], Badanidiyuru et al. [33]), we side-step the intricate

analysis of sensitivity of the linear program to non-uniform stochastic deviations that

arise from adaptive exploration.

LagrangeBwK has a primal-dual interpretation, as arms and resources corre-

spond respectively to primal and dual variables in the linear relaxation. Two players

in the repeated game can be seen as the respective primal algorithm and dual algo-

rithm. Compared to the rich literature 6 on (e.g., primal-dual algorithms Buchbinder

and Naor [48], Mehta [139], Williamson and Shmoys [188]) LagrangeBwK has a very

specific and modular structure dictated by the repeated game.

7.4 Preliminaries

In this section, we state the required preliminaries from prior work on adver-

sarial bandits and zero-sum games.

6This also includes the more recent literature on stochastic online packing problems

(e.g., Agrawal et al. [13], Devanur and Hayes [70], Devanur et al. [72], Feldman et al. [84], Molinaro

and Ravi [147]).
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7.4.1 Adversarial Online Learning

Given: action set A, payoff range [bmin, bmax].

In each round t ∈ [T ],

1. the adversary chooses a payoff vector ft ∈ [bmin, bmax]K ;

2. the algorithm chooses a distribution pt over A, without observing ft,

3. algorithm’s chosen action at ∈ A is drawn independently from pt;

4. payoff ft(at) is received by the algorithm.

Figure 7.2: Adversarial online learning

In this protocol (see Figure 7.2), the adversary can use previously chosen arms

to choose the payoff vector ft, but not the algorithm’s random seed. The distribution

ft is chosen as a deterministic function of history. (The history at round t consists,

for each round s < t, of the chosen action as and the observed feedback in this

round.) We focus on two feedback models: bandit feedback (no auxiliary feedback)

and full feedback (the entire payoff vector ft). The version for costs can be defined

similarly, by setting the payoffs to be the negative of costs.

We are interested in adversarial online learning algorithms with known upper

bounds on regret,

RAOL(T ) :=
[
maxa∈A

∑
t∈[T ] ft(a)

]
−
[∑

t∈[T ] ft(at)
]
. (7.3)

The benchmark here is the total payoff of the best arm, according to the payoff
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vectors actually chosen by the adversary. More precisely, we assume high-probability

regret bounds of the following form:

∀δ > 0 Pr [ RAOL(T ) ≤ (bmax − bmin)Rδ(T ) ] ≥ 1− δ, (7.4)

for some function Rδ(·). We will actually use a stronger version implied by (7.4),7

∀δ > 0 Pr
[
∀τ ∈ [T ] RAOL(τ) ≤ (bmax − bmin)Rδ/T (T )

]
≥ 1− δ. (7.5)

Algorithms EXP3.P (Auer et al. [25]) for bandit feedback, and Hedge (Freund and

Schapire [88]) for full feedback, satisfy (7.4) with, resp.,

Rδ(T ) = O
(√
|A|T log(T/δ)

)
and Rδ(T ) = O

(√
T log(|A|/δ)

)
. (7.6)

7.4.2 Regret minimization in games

We build on the framework of regret minimization in games. A zero-sum game

(A1, A2,G) is a game between two players i ∈ {1, 2} with action sets A1 and A2 and

payoff matrix G ∈ RA1×A2 . If each player i chooses an action ai ∈ Ai, the outcome

is a number G(a1, a2). Player 1 receives this number as reward, and player 2 receives

it as cost. A repeated zero-sum game G with action sets A1 and A2, time horizon T

and game matrices G1 , . . . ,GT ∈ RA1×A2 is a game between two algorithms, ALG1

and ALG2, which proceeds over T rounds such that each round t is a zero-sum game

(A1, A2,Gt). The goal of ALG1 is to maximize the total reward, and the goal of

ALG2 is to minimize the total cost.

7Regret bound (7.5) follows from (7.4) using a simple “zeroing-out” trick: for a given round

τ ∈ [T ], the adversary can set all future payoffs to some fixed value x ∈ [bmin, bmax], in which case

RAOL(τ) = RAOL(T ).
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The game G is called stochastic if the game matrix Gt in each round t is drawn

independently from some fixed distribution. For such games, we are interested in

the expected game, defined by the expected game matrix G = E[Gt]. We can relate

the algorithms’ performance to the minimax value of G.

Lemma 11. Consider a stochastic repeated zero-sum game between algorithms ALG1

and ALG2, with payoff range [bmin, bmax]. Assume that each ALGj, j ∈ {1, 2} is an

algorithm for adversarial online learning, as per Figure 7.2, which satisfies regret

bound (7.4) with Rδ(T ) = Rj,δ(T ).

Let τ be some fixed round in the game. For each algorithm ALGj, j ∈ {1, 2},

let Aj be its action set, let pt,j ∈ ∆Aj be the distribution chosen in each round t,

and let p̄j = 1
τ

∑
t∈[τ ] pt,j be the average play distribution at round τ . Let v∗ be the

minimax value for the expected game G = E[Gt].

Then for each δ > 0, with probability at least 1− 2δ it holds that

∀p2 ∈ ∆A2 p̄T
1 G p2 ≥ v∗ − 1

τ
(bmax − bmin)

(
R1, δ/T (T ) +R2, δ/T (T ) + 4

√
2T log(T/δ)

)
.

(7.7)

Eq. (7.7) states that the average play of player 1 is approximately optimal

against any distribution chosen by player 2.8 This lemma is well-known for the de-

terministic case (i.e., when Gt = G for each round t), and folklore for the stochastic

case. We provide a proof in Appendix 10.3.2 for the sake of completeness.

8If each player j chooses distribution pj ∈ ∆Aj
, and the game matrix is G, then expected

reward/cost is pT
1 Gp2.
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7.5 A new algorithm for Stochastic BwK

We present a new algorithm for Stochastic BwK, based on the framework of

regret minimization in games. This is a very natural algorithm once the single-shot

game is set up, and it allows for a very clean regret analysis. We will also use this

algorithm as a subroutine for the adversarial version.

On a high level, we define a stochastic zero-sum game for which a mixed Nash

equilibrium corresponds to an optimal solution for a linear relaxation of the original

problem. Our algorithm consists of two regret-minimizing algorithms playing this

game. The framework of regret minimization in games guarantees that the average

primal and dual play distributions (p̄1 and p̄2 in Lemma 11) approximate the mixed

Nash equilibrium in the expected game, which correspondingly approximates the

optimal solution.

7.5.1 Linear relaxation and Lagrange functions

We start with a linear relaxation of the problem that all prior work relies on.

This relaxation is stated in terms of expected rewards/consumptions, i.e., implicitly,

in terms of the expected outcome matrix M = E[Mt]. We explicitly formulate the

relaxation in terms of M, and this is essential for the subsequent developments. For

ease of notation, we write the a-th row of M, for each action a ∈ [K], as

M(a) = (rM(a); cM1 (a) , . . . , cMd (a)),
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so that rM(a) is the expected reward and cMi (a) is the expected consumption of each

resource i.

Essentially, the relaxation assumes that each instantaneous outcome matrix

Mt is equal to the expected outcome matrix M = E[Mt]. The relaxation seeks the

best distribution over actions, focusing on a single round with budgets rescaled as

B/T . This leads to the following linear program (LP):

maximize
∑

a∈[K] X(a) rM(a) such that∑
a∈[K] X(a) = 1

∀i ∈ [d]
∑

a∈[K] X(a) cMi (a) ≤ B/T

∀a ∈ [K] 0 ≤ X(a) ≤ 1.

(7.8)

We denote this LP by LPM,B,T . The solution X is the best fixed distribution over

actions, according to the relaxation. The value of this LP, denoted OPTLP(M, B, T ),

is the expected per-round reward of this distribution. It is also the total reward of

X in the relaxation, divided by T . We know from Badanidiyuru et al. [33] that

T ·OPTLP(M, B, T ) ≥ OPTDP ≥ OPTFD, (7.9)

where OPTDP and OPTFD are the total expected rewards of, respectively, the best

dynamic policy and the best fixed distribution. In words, OPTDP is sandwiched

between the total expected reward of the best fixed distribution and that of its

linear relaxation.

Associated with the linear program LPM,B,T is the Lagrange function L =
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LM,B,T . It is a function L : ∆K × Rd
≥0 → R defined as

L(X, λ) :=
∑
a∈[K]

X(a) rM(a) +
∑
i∈[d]

λi

1− T

B

∑
a∈[K]

X(a) cMi (a)

 . (7.10)

The values λ1 , . . . , λd in Eq. (7.10) are called the dual variables, as they correspond

to the variables in the dual LP. Lagrange functions are meaningful due to their max-

min property (e.g., Theorem D.2.2 in Ben-Tal and Nemirovski [36]):

min
λ≥0

max
X∈∆K

L(X, λ) = max
X∈∆K

min
λ≥0
L(X, λ) = OPTLP(M, B, T ). (7.11)

This property holds for our setting because LPM,B,T has at least one feasible solution

(namely, one that puts probability one on the null action), and the optimal value of

the LP is bounded.

Remark 2. We use the linear program LPM,B,T and the associated Lagrange func-

tion LM,B,T throughout this chapter. Both are parameterized by an outcome matrix

M, budget B and time horizon T . In particular, we can plug in an arbitrary M,

and we heavily use this ability throughout. For the adversarial version, it is essential

to plug in parameter T0 ≤ T instead of the time horizon T . For the analysis of the

high-probability result in Adversarial BwK, we use a rescaled budget B0 ≤ B instead

of budget B.

7.5.2 Our algorithm: repeated Lagrangian game

The Lagrange function L = LM,B,T from (7.10) defines the following zero-sum

game: the primal player chooses an arm a, the dual player chooses a resource i, and
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the payoff is a number

L(a, i) = rM(a) + 1− T
B
cMi (a). (7.12)

The primal player receives this number as a reward, and the dual player receives it

as cost. This game is termed the Lagrangian game induced by LM,B,T . This game

will be crucial throughout this chapter.

The Lagrangian game is related to the original linear program as follows:

Lemma 12. Assume one of the resources is the dummy resource. Consider the

linear program LPM,B,T , for some outcome matrix M. Then the value of this LP

equals the minimax value v∗ of the Lagrangian game induced by LM,B,T . Further, if

(X, λ) is a mixed Nash equilibrium in the Lagrangian game, then X is an optimal

solution to the LP.

The proof can be found in Appendix 10.3. The idea is that because of the

special structure of the LP, the second equality in (7.11) also holds when the dual

vector λ is restricted to distributions.

Consider a repeated version of the Lagrangian game. Formally, the repeated

Lagrangian game with parameters B0 ≤ B and T0 ≤ T is a repeated zero-sum game

between the primal algorithm that chooses among arms and the dual algorithm that

chooses among resources. Each round t of this game is the Lagrangian game induced

by the Lagrange function Lt := LMt,B0,T0 , where Mt is the round-t outcome matrix.

Note that we use parameters B0, T0 instead of budget B and time horizon T .9

9These parameters are needed only for the adversarial version. For Stochastic BwK we use

B0 = B and T0 = T .
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Remark 3. Consider repeated Lagrangian game for Stochastic BwK (with B0 = B

and T0 = T ). The payoffs in the expected game are defined by the expected Lagrange

function L := E[Lt]. By linearity, L is the Lagrange function for the expected

outcome matrix M = E[Mt]:

L := E[Lt] = LM,B,T . (7.13)

Our algorithm, called LagrangeBwK, is very simple: it is a repeated Lagrangian

game in which the primal algorithm receives bandit feedback, and the dual algorithm

receives full feedback.

To set up the notation, let at and it be, respectively, the chosen arm and

resource in round t. The payoff is therefore Lt(at, it). It can be rewritten in terms

of the observed outcome vector ot = (rt; ct,1 , . . . , ct,d) (which corresponds to the

at-th row of the instantaneous outcome matrix Mt):

Lt(at, it) = rt + 1− T0

B0
ct,it ∈ [− T0

B0
+ 1, 2]. (7.14)

Note that the payoff range is [bmin, bmax] = [− T0

B0
+ 1].

With this notation, the pseudocode for LagrangeBwK is summarized in Al-

gorithm 5. The pseudocode is simple and self-contained, without referring to the

formalism of repeated games and Lagrangian functions. Note that the algorithm is

implementable, in the sense that the outcome vector ot revealed in each round t of

the BwK problem suffices to generate full feedback for the dual algorithm.
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Algorithm 5: Algorithm LagrangeBwK for Stochastic BwK.

input: parameters B0, T0, primal algorithm ALG1, dual algorithm ALG2.

// ALG1, ALG2 are adversarial online learning algorithms

// with bandit feedback and full feedback, respectively

for round t = 1, 2, 3, . . . do

1. ALG1 returns arm at ∈ [K], algorithm ALG2 returns resource it ∈ [d].

2. arm at is chosen, outcome vector ot = (rt(at); ct,1(at) , . . . , ct,d(at)) ∈

[0, 1]d+1 is observed.

3. The payoff Lt(at, it) from (7.14) is reported to ALG1 as reward, and

to ALG2 as cost.

4. The payoff Lt(at, i) is reported to ALG2 for each resource i ∈ [d].

7.5.3 Performance guarantees

We consider algorithm LagrangeBwK with parameter T0 = T . We assume the

existence of the dummy resource; this is to ensure that the crucial step, Eq. (7.20),

works out even if the algorithm stops at time T , without exhausting any actual

resources. We obtain a regret bound that is non-trivial whenever B > Ω(
√
T ), and

is optimal, up to log factors, in the regime when min(OPTDP, B) > Ω(T ).

Theorem 6. Consider Stochastic BwK with K arms, d resources, time horizon T ,

and budget B. Assume that one resource is the dummy resource (with consumption

B
T

for each arm). Fix the failure probability parameter δ ∈ (0, 1). Consider algorithm
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LagrangeBwK with parameters B0 = B, T0 = T .

If EXP3.P and Hedge are used as the primal and the dual algorithms, respec-

tively, then the algorithm achieves the following regret bound, with probability at least

1− δ:

OPTDP−REW(LagrangeBwK) ≤ O

(
T

B

√
TK log(dT/δ)

)
. (7.15)

In general, suppose each algorithm ALGj satisfies a regret bound (7.4) with

Rδ(T ) = Rj,δ(T ) and payoff range [bmin, bmax] = [− T
B

+ 1, 2]. Then with probability

at least 1−O(δT ) it holds that

OPTDP−REW(LagrangeBwK) ≤ O
(
T
B

) (
R1, δ/T (T ) +R2, δ/T (T ) +

√
T log(dT/δ)

)
.

(7.16)

Remark 4. To obtain (7.15) from the “black-box” result (7.16), we use regret bounds

in Eq. (7.6).

Remark 5. From Badanidiyuru et al. [33], the optimal regret bound for Stochastic

BwK is

OPTDP−E[REW] ≤ Õ
(√

K OPTDP (1 +
√

OPTDP /B)
)
.

Thus, the regret bound (7.15) is near-optimal if min(OPTDP, B) > Ω(T ), and non-

trivial if B > Ω(
√
T ).

We next prove the “black-box” regret bound (7.16). For the sake of analysis,

consider a version of the repeated Lagrangian game that continues up to the time

horizon T . In what follows, we separate the “easy steps” from what we believe is

the crux of the proof.
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Notation. Let Xt be the distribution chosen in round t by the primal algorithm

ALG1. Let Xτ := 1
τ

∑
t∈[τ ] Xt be the distribution of average play up to round τ . Let

M = E[Mt] be the expected outcome matrix. Let r = (rM(a) : a ∈ [K]) be the

vector of expected rewards over the actions. Likewise, ci = (cMi (a) : a ∈ [K]) be

the vector of expected consumption of each resource i ∈ [d].

Using Azuma-Hoeffding inequality. Consider the first τ rounds, for some τ ∈

[T ]. The average reward and resource-i consumption over these rounds are close to

Xτ · r and Xτ · ci, respectively, with high probability. Specifically, a simple usage of

Azuma-Hoeffding inequality (Lemma 28) implies that

1
τ

∑
t∈[τ ]

rt ≥ Xτ · r−R0(τ)/τ, (7.17)

1
τ

∑
t∈[τ ]

ci,t ≤ Xτ · ci +R0(τ)/τ, ∀i ∈ [d], (7.18)

hold with probability at least 1− δ, where R0(τ) = O(
√
τ log(d/δ)).

Regret minimization in games. Let us apply the machinery from regret min-

imization in games to the repeated Lagrangian game. Consider the game matrix

G of the expected game. Using Eq. (7.13) and Lemma 12, we conclude that the

minimax value of G is v∗ = OPTLP(M, B, T ).

We apply Lemma 11, with a fixed stopping time τ ∈ [T ]. Recall that the

payoff range is bmax − bmin = T
B

+ 1. Thus, with probability at least 1− 2δ it holds

that

λ ∈ ∆d : X
T

τ Gλ ≥ v∗ − 1
τ
( T
B

+ 1) · reg(T ), (7.19)

where the regret term is reg(T ) := R1, δ/T (T ) +R2, δ/T (T ) + 4
√

2T log(T/δ).
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Crux of the proof. Let us condition on the event that (7.17), (7.18), and (7.19)

hold for each τ ∈ [T ]. By the union bound, this event holds with probability at

least 1− 3δT .

Let τ denote the stopping time of the algorithm, the first round when the total

consumption of some resource exceeds its budget. Let i be the resource for which

this happens; hence,

∑
t∈[τ ]

ci,t > B. (7.20)

Let us use Eq. (7.19) with λ = λ(i), the point distribution for this resource.

From Eq. (7.13), we have

X
T

τ Gλ(i) = Xτ · r + 1− T
B

Xτ · ci.

Plugging in (7.17) and (7.18) we get

Xτ · r + 1− T
B

Xτ · ci ≤ 1
τ

((∑
t∈[τ ] rt

)
−
(
T
B

∑
t∈[τ ] ci,t

)
+ τ − (1 + T

B
)R0(τ)

)
.

Finally, plugging in Eq. (7.20) we get this to be upper-bounded by the following.

≤ 1
τ

((∑
t∈[τ ] rt

)
+ τ − T − (1 + T

B
)R0(τ)

)
.

Plugging this into Eq. (7.19) and rearranging, we obtain

∑
t∈[τ ]

rt ≥ τ v∗ + T − τ − (1 + T
B

) · reg(T ).

Since v∗ ≤ 1 (because v∗ = OPTLP, as we’ve proved above),

REW(LagrangeBwK) =
∑
t∈[τ ]

rt ≥ T v∗ − (1 + T
B

) · reg(T ).

The claimed regret bound (7.16) follows by Eq. (7.9), completing the proof of The-

orem 6.
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7.6 A simple algorithm for Adversarial BwK

We present and analyze an algorithm for Adversarial BwK which achieves

O(d2 log T ) competitive ratio, in expectation, up to a low-order additive term.

Our algorithm is very simple: we randomly guess the value of OPTFD and run

LagrangeBwK with parameter T0 driven by this guess. The analysis is very differ-

ent, however, since we cannot rely on the machinery from regret minimization in

stochastic games. The crux of the analysis (Lemma 14) is re-used to analyze the

high-probability algorithm in the next section.

The intuition for our algorithm can be explained as follows. LagrangeBwK

builds on adversarial online learning algorithms ALGj, and appears plausibly ap-

plicable to Adversarial BwK. We analyze it for Adversarial BwK, with an arbitrary

parameter T0 (see Lemma 14, the crux of our analysis), and find that it performs

best when T0 is tailored to OPTFD up to a constant multiplicative factor. This is

precisely what our algorithm achieves using the random guess.

Our algorithm is presented as Algorithm 6. We randomly guess the value of

OPTFD from within a specified range [gmin, gmax], up to the specified multiplicative

factor of κ > 0. We consider multiplicative scales [κu, κu+1], u ∈ N, and we guess

uniformly at random among all possible u. Our analysis works as long as OPTFD ∈

[gmin, gmax] and κ ≥ d + 1; then we obtain competitive ratio κ2 dlog gmax

gmin
e up to a

low-order additive term. As a corollary, we obtain competitive ratio κ2

ceil log T e with no assumptions.

Theorem 7. Consider Adversarial BwK with K arms, d resources, time horizon T ,
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Algorithm 6: A simple algorithm for Adversarial BwK.

input: scale parameter κ > 0, guess range [gmin, gmax], primal and dual

algorithms ALG1, ALG2

// ALG1, ALG2 are adversarial online learning algorithms

// with bandit feedback and full feedback, resp.

1 Choose u uniformly at random from {0, 1 , . . . , umax}, where

umax =
⌈
logκ

gmax

gmin

⌉
.

2 Guess the value of OPTFD as ĝ = gmin · κu.

3 Run LagrangeBwK with algorithms ALG1, ALG2 and parameters B0 = B and

T0 = ĝ/κ.

and budget B. Assume that one of the arms is a null arm that has zero reward and

zero resource consumption. Consider Algorithm 6 with scale parameter κ ≥ d + 1.

Suppose algorithms ALGj that satisfy the regret bound Eq. (7.4) with δ = T−2 and

regret term Rδ(T ) = Rj,δ(T ), for any known payoff range [bmin, bmax].

If OPTFD ∈ [gmin, gmax] then the expected reward of Algorithm 6 satisfies

E[REW] ≥ (OPTFD−reg)/
(
κ2
⌈
logκ

gmax

gmin

⌉)
, (7.21)

where reg = (1 + OPTFD

κB
)
(
R1, δ/T (T ) +R2, δ/T (T )

)
. Taking [gmin, gmax] = [1, T ], we

obtain

E[REW] ≥ (OPTFD−reg)/
(
κ2 dlogκ T e

)
. (7.22)

Remark 6. One can use algorithms EXP3.P for ALG1 and Hedge for ALG2, with

regret bounds given by Eq. (7.6), and achieve the regret term

reg = O
(
1 + OPTFD

κB

) √
TK log(Td/δ).
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We obtain a meaningful performance guarantee as long as, say, reg < OPTFD /2;

this requires OPTFD and B to be at least Ω̃(
√
TK).

Remark 7. We define the outcome matrices slightly differently compared to Sec-

tion 7.5 in that we do not posit a dummy resource. Formally, we assume that the

null arm has zero consumption in every resource. This is essential for case 1 ( i.e.,

when τalg ≤ σ) in the analysis of Lemma 14.

If a problem instance of Adversarial BwK is actually an instance of adversar-

ial bandits, then we recover the optimal Õ(
√
KT ) regret. (This easily follows by

examining the proof of Lemma 14.)

Lemma 13. Consider LagrangeBwK, with algorithms EXP3.P for ALG1 and Hedge

for ALG2, for an instance of Adversarial BwK with zero resource consumption. This

algorithm obtains Õ(
√
KT ) regret, for any parameters B0, T0 > 0. Accordingly, so

does Algorithm 6 with any scale parameter κ > 0.

7.6.1 Analysis: proof of Theorem 7 and Lemma 13

Stopped linear program. Let us set up a linear relaxation that is suitable to the

adversarial setting. The expected outcome matrix is no longer available. Instead,

we use average outcome matrices:

Mτ = 1
τ

∑
t∈[τ ]

Mt, (7.23)

the average up to a given intermediate round τ ∈ [T ]. Similar to the stochastic case,

the relaxation assumes that each instantaneous outcome matrix Mt is equal to the
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average outcome matrix Mτ . What is different now is that the relaxation depends

on τ : using Mτ is tantamount to stopping precisely at this round.

With this intuition in mind, for a particular end-time τ we consider the linear

program (7.8), parameterized by the time horizon τ and the average outcome matrix

Mτ . Its value, OPTLP(Mτ , B, τ), represents the per-round expected reward, so it

needs to be scaled by the factor of τ to obtain the total expected reward. Finally,

we maximize over τ . Thus, our linear relaxation for Adversarial BwK is defined as

follows:

OPT
[T ]
LP := max

τ∈[T ]
τ ·OPTLP(Mτ , B, τ) ≥ OPTFD . (7.24)

The proof of Eq. (7.24) is similar to prior work (Badanidiyuru et al. [33], Devanur

et al. [72]). Denote Dτ to be the set of all distributions over the arms such that for

every p ∈ Dτ we have the following: for every i ∈ [d] we have
∑

t∈[τ ] p · ct,i ≤ B. In

other words, Dτ denotes the set of distributions whose expected stopping time is at

least τ . Thus it immediately follows that OPTLP(τ) ≥ maxp∈Dτ
∑

t∈[τ ] p · rt since for

any given p ∈ Dτ it is feasible to LP(τ). Thus OPTLP(τ) is at least the value of any

feasible solution p ∈ Dτ . Note that for every fixed distribution p ∈ ∆K , there exists

a τ such that either p ∈ Dτ and p 6∈ Dτ+1 or p ∈ DT . Moreover the total expected

reward we can obtain using p is
∑

t∈[τ ] p · rt. Thus max1≤τ≤T OPTLP(τ) ≥ OPTFD.

Regret bounds for ALGj. Since each algorithm ALGj, j ∈ {1, 2} satisfies regret

bound Eq. (7.4) with δ = T−2 and Rδ(T ) = Rj,δ(T ), it also satisfies a stronger

version (7.5) with the same parameters. Recall from Eq. (7.14) that the payoff

range is [bmin, bmax] = [−T0

B
+1, 2]. For succinctness, let Uj(T |T0) = (1+ T0

B
)Rj, δ/T (T )
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denote the respective regret term in Eq. (7.5).

Let us apply these regret bounds to our setting. Let at ∈ [K] and it ∈ [d] be,

resp., the chosen arm and resource in round t. We represent the outcomes as vectors

over arms: rt, ct,i ∈ [0, 1]K denote, resp., reward vector and resource-i consumption

vector for a given round t. Recall that the round-t payoffs in LagrangeBwK are given

by the Lagrange function Lt := LMt,B,T0 such that

Lt(a, i) = rt(a) + 1− T0

B
ct,i(a) (7.25)

for each arm a and resource i. Consider the total Lagrangian payoff at a given round

τ ∈ [T ]:

∑
t∈[τ ]

Lt(at, it) = REWτ +τ −Wτ , (7.26)

where REWτ =
∑

t∈[τ ] rt(at) is the total reward up to round τ , andWτ = T0

B

∑
t∈[τ ] ct,it(at)

is the consumption term. The regret bounds sandwich Eq. (7.26) from above and

below:max
a∈[K]

∑
t∈[τ ]

Lt(a, it)

− U1(T |T0) ≤ REWτ +τ −Wτ ≤

min
i∈[d]

∑
t∈[τ ]

Lt(at, i)

+ U2(T |T0).

(7.27)

This holds for all τ ∈ [T ], with probability at least 1 − 2δ. The first inequality

in Eq. (7.27) is due to the primal algorithm, and the second is due to the dual

algorithm. Call them primal and dual inequality, respectively.

Crux of the proof. We condition on the event that Eq. (7.27) holds for all

τ ∈ [T ], which we call the clean event. The crux of the analysis is encapsulated in
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the following lemma, which analyzes an execution of LagrangeBwK with an arbitrary

parameter T0 under the clean event.

Lemma 14. Consider an execution of LagrangeBwK with B0 = B and an arbitrary

parameter T0 such that the clean event holds. Fix an arbitrary round σ ∈ [T ], and

consider the LP value relative to this round:

f(σ) := OPTLP(Mσ, B, σ). (7.28)

The algorithm’s reward up to round σ satisfies

REWσ ≥ min(T0, σ · f(σ)− dT0)− ( U1(T |T0) + U2(T |T0) ) . (7.29)

Taking σ to be the maximizer in Eq. (7.24), algorithm’s reward satisfies

REW ≥ min(T0,OPTFD−dT0)− ( U1(T |T0) + U2(T |T0) ) . (7.30)

Proof. Let τalg be the stopping time of the algorithm. We consider two cases, de-

pending on whether some resource is exhausted at time σ. In both cases, we focus

on the round min(τalg, σ).

Case 1: τalg ≤ σ and some resource is exhausted. Let us focus on round

τ = τalg. If i is the exhausted resource, then
∑

t∈[τ ] ct,i(at) > B. Let us apply the

dual inequality in Eq. (7.27) for this resource:

REWτ +τ −Wτ − U2(T |T0) ≤
∑
t∈[τ ]

Lt(at, i)

= REWτ +τ − T0

B

∑
t∈[τ ]

ct,i(at)

≤ REWτ +τ − T0.
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It follows that Wτ ≥ T0 − U2(T |T0).

Now, let us apply the primal inequality in Eq. (7.27) for the null arm. Recall

that the reward and consumption for this arm is 0, so Lt(null, it) = 1 for each

round t. Therefore,

REWτ +τ −Wτ + U1(T |T0) ≥
∑
t∈[τ ]

Lt(null, it) = τ.

We conclude that REWτ ≥ Wτ − U1(T |T0) ≥ T0 − U1(T |T0)− U2(T |T0).

Case 2: τalg ≥ σ. Let us focus on round σ. Consider the linear program

LPMσ ,B,σ
, and let X∗ ∈ ∆K be an optimal solution to this LP. The primal inequality

in Eq. (7.27) implies that

REWσ +σ −Wσ + U1(σ) ≥ max
a∈[K]

∑
t∈[σ]

Lt(a, it)

≥
∑
t∈[σ]

∑
a∈[K]

X∗(a) Lt(a, it)

= σ +
∑
t∈[σ]

X∗ · rt − T0

B

∑
t∈[σ]

X∗ · ct,it

REWσ ≥ σ · f(σ)− T0

B

∑
t∈[σ]

X∗ · ct,it − U1(T |T0). (7.31)

In the last inequality we used the fact that
∑

t∈[σ] X
∗ · rt = σ · f(σ) by optimality

of X∗.∑
t∈[σ] X

∗ · ct,i ≤ B for each resource i, since X∗ is a feasible solution for

OPTLP(Mσ, B, σ). Then,

∑
t∈[σ]

X∗ · ct,it ≤
∑
i∈[d]

∑
t∈[σ]

X∗ · ct,i ≤ dB. (7.32)

Plugging Eq. (7.32) into Eq. (7.31), we conclude that REWσ ≥ σ · f(σ) − dT0 −

U1(T |T0).
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Conclusions from the two cases imply Eq. (7.30), as claimed.

Wrapping up. If OPTFD lies in the guess range [gmin, gmax], then some guess ĝ is

approximately correct:

OPTFD /κ ≤ ĝ ≤ OPTFD .

With such a guess ĝ, and provided that κ ≥ d+ 1, we have T0 = ĝ/κ ≥ OPTFD /κ
2,

and

OPTFD−dT0 ≥ OPTFD(1− d
κ
) ≥ OPTFD /κ.

So, by Lemma 14, the algorithm’s execution with this guess, assuming the clean

event, satisfies Eq. (7.30) with min(T0,OPTFD−dT0) ≥ OPTFD /κ
2 and T0 ≤ OPTFD /κ.

The regret term for this guess is

U1(T |T0) + U2(T |T0) ≤ (1 + OPTFD

κB
) (R1, δ/T (T ) +R2, δ/T (T )).

To complete the proof of Theorem 7, we obtain a suitable guess ĝ with probability

1/
⌈
logκ

gmax

gmin

⌉
.

Proof Sketch of Lemma 13. Recall that in the adversarial bandit setting we have

ci,t = 0 for every i ∈ [d] and every t ∈ [T ]. We re-analyze Lemma 14 with σ = T .

Notice that case 1 never occurs. Thus we obtain obtain Eq. (7.31) in case 2. Note

that T0

B

∑
t∈[σ] X

∗ · ct,it = 0 since ci,t = 0. Therefore, we obtain

REWT ≥ T · f(T )− U1(T |T0).

We now argue that T · f(T ) = maxa∈[K]

∑
t∈[T ] rt(a). Let X∗ be the optimal

distribution over the arms. Thus
∑

t∈[T ] X
∗ · rt = T · f(T ). Note that since ci,t = 0
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the only constraint on X∗ is that it lies in ∆K . Therefore the maximizer is a point

distribution on maxa∈[K]

∑
t∈[T ] rt(a). This proof does not rely on any specific value

for B0, T0. The payoff range is [bmax, bmin] = [1, 2], so U1(T |T0) = Õ
(√

KT
)

.

7.7 High-probability algorithm for Adversarial BwK

In this section we recover the O(log T ) approximation ratio for Adversarial

BwK, but with high probability rather than merely in expectation. Our algo-

rithm uses LagrangeBwK as a subroutine, and re-uses the adversarial analysis thereof

(Lemma 14). We do not attempt to optimize the regret term.

The algorithm is considerably more complicated compared to Algorithm 6.

Instead of making one random guess ĝ for the value of OPT
[T ]
LP , we iteratively refine

this guess over time. The algorithm proceeds in phases. In the beginning of each

phase, we start a fresh instance of LagrangeBwK with parameter T0 defined by the

current value of ĝ.10 We update the guess ĝ in each round (in a way specified later),

and stop the phase once ĝ becomes too large compared to its initial value in this

phase. We invoke LagrangeBwK with a rescaled budget B0 = B/Θ (log T ). Within

each phase, we simulate the BwK problem with budget B0: we stop LagrangeBwK

once the consumption of some resource in this phase exceeds B0. For the remainder

of the phase, we play the null arm with probability 1−γ0 and do uniform exploration

with the remaining probability, for some parameter γ0 ∈ (0, 1) (here and elsewhere,

uniform exploration refers to choosing each action with equal probability). The

10The idea of restarting the algorithm in each phase is similar to the standard “doubling trick”

in the online machine learning literature, but much more delicate in our setting.
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pseudocode is summarized in Algorithm 7.

Algorithm 7: High-probability algorithm for Adversarial BwK.

input: scale parameter κ, exploration parameter γ0, primal algorithm ALG1,

dual algorithm ALG2

// ALG1, ALG2 are adversarial online learning algorithms

// with bandit feedback and full feedback, resp.

1 Initialize ĝ = 1.

2 for each phase do

3 Start a fresh instance ALG of LagrangeBwK

4 with parameters B0 = B/2dlogκ T e and T0 = ĝ/(dlogκ T eκ2).

5 for each round in this phase do

6 Recompute the global estimate ĝ

7 if ĝ > T0/κ then start a new phase

8 if consumption of all resources in this phase does not exceed B0 then

9 Play the action chosen by ALG, observe the outcome and report it

back to ALG.

10 else

11 Choose the null arm with probability 1− γ0, do uniform

exploration otherwise

To complete algorithm’s specification, let us define how to update the guess

ĝ in each round t. The guess, denoted ĝt, is an estimate for OPT
[t]
LP, as defined in

(7.24). We form this estimate using a standard inverse propensity scoring (IPS )
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technique. Let pt and at be, resp., the distribution and the arm chosen by the

primal algorithm in round t. The instantaneous outcome matrix Mt is estimated

by matrix Mips
t ∈ [0,∞)K×d such that each row Mips

t (a) is defined as follows:

Mips
t (a) := 1{at=a}

1
ft(at)

Mt(a).

For a given end-time τ , the average outcome matrix Mτ from (7.23) is estimated as

M
ips

τ := 1
τ

∑
t∈[τ ]

Mips
t .

Finally, we plug this estimate into (7.23) and define

ĝt := max
τ∈[T ]

τ ·OPTLP(M
ips

τ , B, τ). (7.33)

For the analysis, we will assume that the primal algorithm does some uniform ex-

ploration:

pt(a) ≥ γ > 0 for each arm a ∈ [K] and each round t ∈ [T ]. (7.34)

Theorem 8. Consider Adversarial BwK with K arms, d resources, time horizon T ,

and budget B; assume B > 4T 3/4. Suppose that one of the arms is a null arm that

has zero reward and zero resource consumption. Let δ > 0 be the failure probability

parameter.

Consider Algorithm 7 with parameters κ ≥ d+1 and γ0 = T−1/4. Assume that

each algorithm ALGj, j ∈ {1, 2}, satisfies the regret bound (7.4) with payoff range

[bmin, bmax] = [− T
B

+ 1, 2] and regret term Rδ(T ) = Rj,δ(T ). Assume that the primal

algorithm ALG1 satisfies (7.34) with parameter γ ≥ T−1/4.

Then the total reward REW collected by Algorithm 7 satisfies

Pr
[

REW ≥ (OPTFD−reg)/
(
2κ4 dlogκ T e

) ]
≥ 1−O(δT ), (7.35)
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where the regret term is reg = T
B

(
K T 3/4 log1/2(1

δ
) +R1, δ/T (T ) +R2, δ/T (T )

)
.

Remark 8. Using algorithms EXP3.P for ALG1 and Hedge for ALG2, we can

achieve (7.35) with

reg = O
(
TK
B

)
T 3/4

√
log(T/δ).

This is because EXP3.P, with appropriately modified uniform exploration term γ =

T−1/4, satisfies the regret bound (7.4) with Rδ(τ) = O(T 3/4)
√
K log T

δ
, and for Hedge

we can (still) use 7.6. The theorem is meaningful whenever, say, reg < OPTFD /2.

The latter requires OPTFD ·BK > Ω̃(T 7/4).

Remark 9. Like in Theorem 7, we posit that the null arm does not consume any

resources.

Proof Sketch. The proof consists of several steps. First, we argue that the guess

ĝt is close to OPT
[t]
LP with high probability. This argument only relies on the uni-

form exploration property (7.33) and the definition of IPS estimators, not on any

properties of the algorithm. We immediately obtain concentration for the aver-

age outcome matrices; a somewhat subtle point is to derive concentration on the

respective LP-values.

Next, we focus on a particular phase in the execution of the algorithm. We

say that a phase is full if the stopping condition ĝt > T0/κ has fired. We focus on

the last full phase. We prove there is enough reward to be collected in this phase.

Essentially, letting τ1, τ2 be, resp., the start and end time of this phase, we consider

the BwK problem restricted to time interval [τ1, τ2], and lower-bound the LP-value

of this problem in terms of the LP-value of the original problem. Finally, we use the
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adversarial analysis of LagrangeBwK (Lemma 14) to guarantee that our algorithm

actually collects that value.

Because of the stopping condition ĝt > T0/κ, there can be at most dlogκ T e

phases. Therefore, rescaling the budget to B0/2dlogκ T e guarantees that the al-

gorithm consumes at most B/2 of the budget. We then argue that, with high-

probability, the additional uniform exploration in each phase, consumes a budget

of at most B/2 with high-probability. Thus, the algorithm never runs out of bud-

get.

We now describe the full proof of Theorem 8, following the plan outlined in

the proof sketch. We decompose the analysis into several distinct pieces, present

them one by one, and then show how to put them together. Each piece is presented

as a lemma, with appropriate notation and intuition; some of the proofs are deferred

to later in this section. Throughout, we assume that

min{OPTFD, B} > Ω
(
KT 3/4 log T

δ

)
. (7.36)

This is without loss of generality, because otherwise the guarantee in Theorem 8 is

vacuous. Recall that the primal algorithm ALG1 satisfies the uniform exploration

property (7.33) with parameter γ ≥ T−1/4.

Extended notation. To argue about a given phase, we extend some of our notation

to refer to arbitrary time intervals, not just [1, τ ]. In what follows, fix time interval
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[τ1, τ2], and let ∆τ = τ2 − τ1 + 1. Let

M[τ1,τ2] :=
1

∆τ

τ2∑
t=τ1

Mt,

M
ips

[τ1,τ2] :=
1

∆τ

τ2∑
t=τ1

Mips
t

be, resp., the average outcome matrix and its IPS-estimate on this time interval.

Define

OBJ([τ1, τ2]) := ∆τ ·OPTLP(M[τ1,τ2], B,∆τ), (7.37)

OBJips([τ1, τ2]) := ∆τ ·OPTLP(M
ips

[τ1,τ2], B,∆τ). (7.38)

When τ1 = 1 we use the short-hand OBJ(τ2) and OBJips(τ2). Recall that

OPT
[τ ]
LP := max

τ∈[T ]
OBJ(τ). (7.39)

ĝτ := max
τ∈[T ]

OBJips(τ). (7.40)

Uniform exploration does not exhaust budget. The uniform exploration in

Algorithm 7 happens for at most γ0 T rounds in expectation, and therefore for at

most γ0 T + 3
√
γ0T ln(1/δ) rounds with probability at least 1 − δ.11 It does not

consume more than B/2 units of each resource, since γ0 = T−1/4 and B > 4T 3/4.

IPS estimators are good. We argue that, essentially, the guess ĝτ is close to

OPT
[τ ]
LP with high probability. More precisely, we prove that OBJ(τ) is close to its

IPS estimator, for any given τ ∈ [T ]. We will denote the deviation term as

DEV(τ) := C0

(
K · OBJ(τ)

γB

√
τ log T

δ

)
, (7.41)

11By an easy application of Chernoff-Hoeffding bounds (Lemma 29).
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for a sufficiently large absolute constant C0. Thus, DEV(τ) ≤ O
(
K T 7/4

B

√
log T

δ

)
(:=

DEV(T )).

In this notation, we characterize the IPS estimators as follows:

Lemma 15. With probability at least 1− dδT it holds that

∀τ ∈ [T ] OBJips(τ)− DEV(τ) ≤ OBJ(τ) ≤ OBJips(τ) + DEV(τ). (7.42)

If the event (7.42) holds, then ĝτ and OPT
[τ ]
LP are indeed close:

∀τ ∈ [T ]
∣∣∣ĝτ −OPT

[τ ]
LP

∣∣∣ ≤ max
t∈[τ ]

DEV(t). (7.43)

The proof only relies on the uniform exploration property (7.33) and the defini-

tion of IPS estimators, not on anything that the algorithm does. A somewhat subtle

point is to derive concentration on the respective LP-values from concentration of

the average outcome matrices.

IPS estimators do not change too fast. We use the stopping condition in the

algorithm to argue that the IPS estimators OBJips(·) do not change too fast from

one phase to another, in some specific sense. Namely, we compare OBJips(·) in the

first round of any full phase to the guess in the last round of the next phase.

Lemma 16. Consider a full phase in the execution of the algorithm. Let τ be the

first round in this phase, and let τ ′ be any round in the next phase. Then

1

κ2
≤ OBJips(τ)

ĝτ ′
≤ 1

κ
+

K

γĝτ ′
. (7.44)

Proof. There exists a j ∈ {1, 2 , . . . , dlogκ T e} such that OBJips(τ) ≥ κj. Since τ

is the beginning of a phase, this implies that OBJips(τ − 1) < κj−1. Observe that
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in a single time-step the value of the estimate can increase by at most K
γ

. Thus

OBJips(τ) < κj−1 + K
γ

. Moreover since τ ′ belongs to the next phase, we have that

κj+1 ≤ ĝτ ′ ≤ κj+2. Putting these together we get that

1

κ2
≤ OBJips(τ)

ĝτ ′
≤ 1

κ
+

K

γκj+1
≤ 1

κ
+

K

γĝτ ′
.

This Lemma relies only on the stopping condition in the algorithm, ĝ > T0/κ,

and the way the guess ĝτ is expressed in terms of the IPS estimators OBJips(·), as

expressed in 7.40. It is irrelevant to this Lemma how the IPS estimators OBJips(·)

are actually defined.

Last full phase offers sufficient rewards. Recall that a phase in the execution

of the algorithm is called full if the stopping condition ĝt > T0/κ has fired. We

focus on the last full phase; let τstart, τend denote the first and last time-steps of this

phase. We prove there is enough reward to be collected in this phase.

Let τ ∗ denote the maximizer in 7.24 which we interpret as the optimal stopping

time. Essentially, we compare the LP value for the time interval [τstart, τend] with the

LP value for the time interval [1, τ ∗]. The former is expressed as OBJ([τstart, τend])

and the latter as OPT
[T ]
LP . Note that the time horizon T lies in the subsequent phase

(so we can apply Lemma 16).

Lemma 17. Consider a run of the algorithm such that event (7.42) holds. Then

OBJ([τstart, τend]) ≥
(

1

κ
− 1

κ2

)
OPT

[T ]
LP −O(DEV(T )). (7.45)

Adversarial analysis of LagrangeBwK. Let us plug in the adversarial analysis
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of LagrangeBwK, as encapsulated in Lemma 14. We focus on the last full phase

in the execution. We interpret it as an execution of algorithm LagrangeBwK with

parameters B0, T0 on an instance of Adversarial BwK with budget B0 that starts at

round τstart of the original problem. Let ĝ = ĝτstart be the guess at the first round of

the phase. Then the parameters are B0 = B/ratio and T0 = ĝ/(κ2 · ratio), where

ratio = dlogκ T e.

We apply Lemma 14 for round σ = τend − τstart + 1 in the execution of

LagrangeBwK. Restated in our notation, f(σ) in Lemma 14 becomes

f(σ) = OPTLP(M[τstart,τend], B0, σ).

Thus, we obtain that with probability at least 1− δ we have

REW ≥
τend∑

t=τstart

rt(at) ≥ min

(
ĝ

dlogκ T eκ2
, σf(σ)− dĝ

dlogκ T eκ2

)
− reg(T ), (7.46)

where the regret term is reg(T ) := (1 + T
B

)
(
R1, δ/T (T ) +R2, δ/T (T )

)
.

Rescaling the budget. Since we use rescaled budget B0, it is important to con-

nect the corresponding LP-values to those for the original budget B. We have the

following general fact (observed in Agrawal and Devanur [11]): for any outcome

matrix M, budget B, time horizon T , and rescaling factor ψ ∈ (0, 1] it holds that

OPTLP (M, ψB, T ) ≥ ψ ·OPTLP (M, B, T ) . (7.47)

This holds because an optimal solution µ to LPM,B,T , the vector ψ µ is feasible to

LPM,ψB,T .

Putting it all together. We defer the proofs of Lemma 15 and Lemma 17 to the
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following subsections, and show how to complete the proof of Theorem 8 assuming

these Lemmas hold.

Proof of Theorem 8. Throughout this proof, let us condition on the high-probability

events in Lemma 15 and 7.46. Moreover from 7.47 we have that σf(σ) ≥ 1
ratio

OBJ([τstart, τend])

since B0 = B
ratio

. Thus combining this with 7.46 we get,

REW =

τend∑
t=τstart

rt(at) ≥
1

ratio
min

(
ĝ

κ2
, OBJ([τstart, τend])−

dĝ

κ2

)
− reg(T ). (7.48)

Further from Lemma 17 with κ = d+ 1, we can re-write 7.48 as

REW ≥ 1

ratio
min

(
ĝ

κ2
,

(
1

κ
− 1

κ2

)
OPT

[T ]
LP −

ĝ

κ

)
− reg(T ). (7.49)

Recall that ĝ for the phase [τstart, τend] is OBJips(τstart). Moreover we have that

T lies in the phase immediately after [τstart, τend].

Thus from 7.44 (first inequality below) and 7.43 (second inequality below) we

have,

ĝ ≤ 1

κ
ĝT +

K

γ
≤ 1

κ
OPT

[T ]
LP +O(DEV(T )). (7.50)

Likewise we have,

ĝ ≥ OBJips(τstart) ≥
1

κ2
ĝT ≥

1

κ2
OPT

[T ]
LP −O(DEV(T )), (7.51)

where the second inequality uses 7.44 and the last inequality uses 7.42. Plugging

7.50 and 7.51 back into 7.49 we get,
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REW ≥ 1

ratio
min

(
OPT

[T ]
LP

κ4
,

(
1

κ
− 2

κ2

)
OPT

[T ]
LP

)
− reg(T )−O(DEV(T )). (7.52)

And from 7.24 we have OPT
[T ]
LP ≥ OPTFD. Plugging this into 7.52 we get

7.35.

7.7.1 Proof of Lemma 17 (last full phase offers sufficient rewards)

We first prove the following property of the optimal solution.

Claim 1. Let T1 < T2 be any two time-steps. Then,

OBJ([T1, T2]) ≥ OBJ(T2)− OBJ(T1 − 1). (7.53)

Proof. We prove this claim as follows. Let µT2 denote the optimal solution to

LPMT2
,B,T2

. Since ct,i(a) ≥ 0 for every a ∈ [K], t ∈ [T ] and i ∈ [d] we have

µT2 ·
∑
t∈[T2]

ct,i ≤ B =⇒ µT2 ·
∑

t∈[T1−1]

ct,i ≤ B.

Thus µT2 is feasible to LPMT1−1,B,T1−1. This implies that
∑

t∈[T1−1] µT2 · rt ≤

OBJ(T1 − 1). Likewise µT2 is also feasible to LPM[T1,T2],B,[T1,T2].

Therefore we have,
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OBJ([T1, T2]) ≥
T2∑
t=T1

µT2 · rt

=
∑
t∈[T2]

µT2 · rt −
∑

t∈[T1−1]

µT2 · rt

= OBJ(T2)−
∑

t∈[T1−1]

µT2 · rt

≥ OBJ(T2)− OBJ(T1 − 1)

Consider OBJ([τstart, τend]). From 7.53 we have

OBJ([τstart, τend]) ≥ OBJ(τend)− OBJ(τstart − 1). (7.54)

From Lemma 15 we can re-write 7.54 as

OBJ(τend)− OBJ(τstart − 1) ≥ OBJips(τend)− OBJips(τstart − 1)−O(DEV(T )). (7.55)

For some j ∈ dlogκ(T )e, at time-step τend the value ĝt exceeds κj for the first

time. Likewise ĝt exceeds κj−1 for the first time at τstart and is smaller than this

value at τstart− 1. This implies that OBJips(τend) ≥ κj and OBJips(τstart− 1) < κj−1.

Therefore 7.55 simplifies to

OBJips(τend)− OBJips(τstart − 1)−O(DEV(T )) ≥ κj − κj−1 −O(DEV(T )). (7.56)

Combining 7.56, 7.55 and 7.54 we get

OBJ([τstart, τend]) ≥ κj − κj−1 −O(DEV(T )).
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Dividing throughout by ĝT and noting that ĝT ≤ κj+1 we have,

OBJ([τstart, τend])

ĝT
≥ κj−1(κ− 1)

κj+1
− O(DEV(T ))

ĝT

=

(
1

κ
− 1

κ2

)
− O(DEV(T ))

ĝT

Finally applying Lemma 15 to ĝT we get 7.45. This completes the proof of

Lemma 17.

7.7.2 Proof of Lemma 15 (IPS estimators are good)

Recall that for every t ∈ [T ] and a ∈ [K] we have that pt(a), the probability

that arm a is chosen at time t is at least γ
K

. We now prove Lemma 2 which relates

linear sums of rewards and consumptions computed using the unbiased estimates

and the true values. Denote Rγ,δ(τ) := K
γ

√
2τ ln(T/δ).

Claim 2. Let δ > 0, γ > 0 used by the EXP3.P(γ) be given parameters. Then we

have the following statements for any fixed z ∈ ∆K.

Pr

∃τ ∈ [T ]

∣∣∣∣∣∣
∑
t∈[τ ]

z · [r̂t − rt]

∣∣∣∣∣∣ > Rγ,δ(τ)

 ≤ δ (7.57)

∀i ∈ [d] Pr

∃τ ∈ [T ]

∣∣∣∣∣∣
∑
t∈[τ ]

z · [ĉt,i − ct,i(a)]

∣∣∣∣∣∣ > Rγ,δ(τ)

 ≤ δ (7.58)

Proof. The proof of this follows directly from the invocation of the Azuma-Hoeffding

inequality. We will show this for Equation (7.57). Define Yt := z · [r̂t − rt] (like-wise

for the lower-tail use Yt := z · (rt− r̂t)). Note that this forms a martingale difference

sequence since E[z ·(r̂t−rt) | Ht−1] = z · [rt − rt] = 0. Here we used the fact that z is

not random and fixed before the start of the algorithm. Also we have that |Yt| ≤ K
γ

.
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Using Lemma 28 and taking a union bound over all τ ∈ [T ] we have the desired

equation.

We will now prove the two inequalities in 7.42. We will first prove the first

inequality in 7.42.

Let µ∗ denote the optimal solution to OPTLP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ
)

. Note

this is valid whenever B > Ω
(
K
γ

√
τ log T

δ

)
. From Equation (7.58) we have that

with probability at least 1− δ for every i ∈ [d],

∑
t∈[τ ]

µ∗ · ĉt,i ≤
∑
t∈[τ ]

µ∗ · ct,i +Rγ,δ(τ).

≤ B (7.59)

7.59 used the fact that
∑

t∈[τ ] µ
∗ · ct,i ≤ B (1−Rγ,δ(τ)).

Using Equation (7.57), we have that with probability at least 1− δ,

∑
t∈[τ ]

µ∗ · rt ≤
∑
t∈[τ ]

µ∗ · r̂t +Rγ,δ(τ).

Using the fact that,

∑
t∈[τ ]

µ∗ · rt = OPTLP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
,

we have the following.

OPTLP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
−Rγ,δ(τ) ≤

∑
t∈[τ ]

µ∗ · r̂t. (7.60)

From 7.59 we have that µ∗ is feasible to OPTips
LP (τ) and from 7.60 this implies

that
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OBJips (τ) ≥ OPTLP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
−Rγ,δ(τ). (7.61)

Finally from 7.47 we have

OPTLP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
≥
(

1− Rγ,δ(τ)

B

)
OBJ (τ) . (7.62)

From 7.61 and 7.62 we have

OBJips(τ) ≥ OBJ(τ)−Rγ,δ(τ)

(
1 +

OBJ(τ)

B

)
︸ ︷︷ ︸

=O

(
KOBJ(τ)
γB

√
τ log

T
δ

)
,

which gives the lower-tail in 7.42.

We will now prove the second inequality in 7.42 in a similar fashion. Let µ̃∗

denote the optimal solution to OBJips
(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ
)

.

From Equation (7.58) we have that with probability at least 1 − δ for every

i ∈ [d],

∑
t∈[τ ]

µ̃∗ · ct,i ≤
∑
t∈[τ ]

µ̃∗ · ĉt,i +Rγ,δ(τ).

≤ B (7.63)

7.63 used the fact that
∑

t∈[τ ] µ̃
∗ · ĉt,i ≤ B (1−Rγ,δ(τ)).

Using Equation (7.57), we have that with probability at least 1− δ,

∑
t∈[τ ]

µ̃∗ · r̂t ≤
∑
t∈[τ ]

µ̃∗ · rt +Rγ,δ(τ).

From the fact that

∑
t∈[τ ]

µ̃∗ · r̂t = OPTips
LP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
,
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we get the following.

OPTips
LP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
−Rγ,δ(τ) ≤

∑
t∈[τ ]

µ̃∗ · rt. (7.64)

From 7.63 we have that µ̃∗j is feasible to OPTLP (τ) and from 7.64 this implies

that

OPTips
LP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
≤ OBJ (τ) +Rγ,δ(τ). (7.65)

Finally from 7.47 we have

OPTips
LP

(
Mτ , B

(
1− Rγ,δ(τ)

B

)
, τ

)
≥
(

1− Rγ,δ(τ)

B

)
OBJips (τ) . (7.66)

Combining 7.66 and 7.65 we get,

OBJips(τ) ≤ OBJ(τ) +
Rγ,δ(τ)

B −Rγ,δ(τ)
(OBJ(τ) +Rγ,δ(τ)) . (7.67)

Since B0 > 2Rγ,δ(τ) we get,

OBJips(τ) ≤ OBJ(τ) +
2Rγ,δ(τ)

B
(OBJ(τ) +Rγ,δ(τ))︸ ︷︷ ︸

=O

(
KOBJ(τ)
γB

√
τ log

T
δ

)
,

and thus we get the upper-tail in 7.42.

We will now prove 7.43. Recall that ĝτ := maxt∈[τ ] OBJ
ips(t). Moreover

OPT
[τ ]
LP = maxt∈[τ ] OBJ(t).

Consider ĝτ −OPT
[τ ]
LP . We have,
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ĝτ −OPT
[τ ]
LP = max

t∈[τ ]
OBJips(t)−OPT

[τ ]
LP

≤ max
t∈[τ ]

(OBJ(t) + DEV(t))−OPT
[τ ]
LP

≤ max
t∈[τ ]

OBJ(t) + max
t∈[τ ]

DEV(t)−OPT
[τ ]
LP

= max
t∈[τ ]

DEV(t).

Now consider OPT
[τ ]
LP −ĝτ . We have,

OPT
[τ ]
LP −ĝτ ≤ OPT

[τ ]
LP −max

t∈[τ ]
(OBJ(t)− DEV(t))

≤ OPT
[τ ]
LP −max

t∈[τ ]
OBJ(t) + max

t∈[τ ]
DEV(t)

= max
t∈[τ ]

DEV(t).

This completes the proof of Lemma 15.

7.8 Lower bounds

We prove the lower bounds on the competitive ratio that we have claimed

in sub-section 7.3.1: the Ω(log T ) lower bound w.r.t. the best fixed distribution

benchmark (OPTFD), the Ω(T ) lower bound w.r.t. the best dynamic policy bench-

mark (OPTDP), and the Ω(K) lower bound w.r.t. the best fixed arm benchmark

(OPTFA). As a warm-up, we analyze the simple example from sub-section 7.3.1 that

leads to the 5
4

lower bound w.r.t. OPTFD. All lower-bounds are for a randomized

algorithm against an oblivious adversary. We summarize all these lower bounds in

the following theorem:
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Theorem 9. Consider Adversarial BwK with a single resource (d = 1) and K

arms. Consider any randomized algorithm for this problem, and let REW denote

its reward. Then:

(a) OPTFD /E[REW] ≥ 5
4
− o(1) for some problem instance (from the example in

the Introduction).

(b) OPTFD /E[REW] ≥ Ω(log T ) for some problem instance.

(c) OPTDP /E[REW] ≥ T/B2 for some problem instance, for any given budget B.

(d) OPTFA /E[REW] ≥ Ω(K) for some problem instance.

Remark 10. The lower bounds for parts (a,b,c) hold (even) for problem instances

with K = 2 arms. The lower bounds in parts (a,b) hold even for a much more

permissive feedback model from the online packing literature, namely, when the al-

gorithm observes the outcome vector for all actions in a given round, and moreover

does it before it chooses an arm in this round.

We tweak our construction from Theorem 9(c) to obtain a strong lower bound

for the contextual version of Adversarial BwK (a.k.a. Adversarial cBwK ), as studied

in Section 7.9.3. This lower bound implies that Adversarial cBwK is essentially

hopeless in the regime B <
√
T , complementing a strong positive result (Corollary 3)

for the regime B > Ω̃(
√
T ). It is proved in Section 7.8.3, along with Theorem 9(c).

Theorem 10. Consider adversarial contextual bandits with knapsacks (Adversarial

cBwK), with policy class Π, a single resource (d = 1), K = 2 arms, and any given
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budget B <
√
T . Consider any randomized algorithm for this problem, and let REW

denote its reward. Then

OPTFD(Π)/E[REW] ≥ T/B2 for some problem instance.

Notation. In the proof of lower-bounds below, we use the following notation.

Given an instance I, we denote OPTFD(I), OPTFA(I) and OPTDP(I) to denote the

optimal value of the best fixed distribution, best fixed arm and best dynamic policy

respectively, for instance I. Likewise let OPT
[T ]
LP (I) denote the optimal LP value for

instance I and given an algorithm A and an instance I, let E[REW(A, I)] denote

the expected reward obtained by A on instance I, where the expectation is over the

internal randomness of the algorithm.

7.8.1 Warm-up: example from the Introduction

As a warm-up, let us recap and analyze the example from the Introduction.

Construction 2. There are two arms and one resource with budget B = T
2

. Arm

1 has zero rewards and zero consumption. Arm 2 has consumption 1 in each round,

and offers reward 1
2

in each round of the first half-time (T
2

rounds). In the second

half-time, arm 1 offers either reward 1 in all rounds, or reward 0 in all rounds.

More formally, there are two problem instances, call them I1 and I2, that coincide

for the first half-time and differ in the second half-time.

Lemma 18. Any algorithm suffers OPTFD /E[REW] ≥ 5
4
− o(1) on some instances

in Construction 2.
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The intuition is that given a random instance as input the algorithm needs to

choose how much budget to invest in the first half-time, without knowing what comes

in the second, and any choice (in expectation) leads to the claimed competitive ratio.

To prove Lemma 18 (as well we the main lower bound in Theorem 9(b)) we

compare algorithm’s performance to OPT
[T ]
LP , and invoke the following lemma:

Lemma 19. OPTFD ≥ OPT
[T ]
LP −O

(
OPT

[T ]
LP ·
√

log dT
B

)
.

Proof. Let τ ∗ denote the time-step at which OPT
[T ]
LP is maximized. Let p denote

the optimal solution to τ ∗ ·OPTLP(Mτ∗ , B(1− ε), τ ∗) where ε =
√

log dT
B

. Note that

OPTFD is at least as large as the expected total reward obtained by the distribution

p. From the Chernoff-Hoeffding bounds (Lemma 29), with probability at least

1− dT−2 we have

∀i ∈ [d]
∑
t∈[τ∗]

p · ct,i ≤ B.

Conditioning on this event the expected total reward obtained by p is

∑
t∈[τ∗]

p · rt = τ ∗ ·OPTLP(Mτ∗ , B(1− ε), τ ∗).

Thus the expected total reward obtained by p is at least τ ∗ · OPTLP(Mτ∗ , B(1 −

ε), τ ∗). 12 Moreover from Eq. (7.47) we have that

OPTFD ≥ τ ∗ ·OPTLP(Mτ∗ , B(1− ε), τ ∗)

≥ (1− ε)τ ∗ ·OPTLP(Mτ∗ , B(1− ε), τ ∗)

≥ OPT
[T ]
LP −O

(
OPT

[T ]
LP

√
log dT

B

)
.

12With probability T−2 we assume that p has an expected reward of 0.
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Proof of Lemma 18. Denote the two arms by A1 and A0 where A0 denotes the null

arm. The consumption for arm A1 is 1 for all rounds in both I1 and I2. Thus

the only difference between the two instances is the rewards obtained for playing

arm A1 in each round. The instances have two phases where each phase lasts for T
2

rounds. In phase 1, in both I1 and I2 playing arm A1 fetches a reward 1
2
. In the

second phase, in I1, the reward for playing arm A1 is 0 while in I2 the reward for

playing arm A1 is 1. Thus the outcome matrix for the first T
2

time-steps is the same

in instances I1 and I2.

Consider a randomized algorithm A. Let α1 be the expected number of times

arm A1 is played by A in the first T
2

rounds on instances I1 and I2. Note since the

outcome matrix is same, the expected number of times the arm is played should be

same in both the instances. Let α2,1, α2,2 denote the expected number of times arm

A1 is played in the second phase in instances I1 and I2 respectively.

Recall that in this section we are interested in a lower-bound on the com-

petitive ratio OPTFD /E[REW] for every instance. Consider OPT
[T ]
LP (I1), the opti-

mal value of the best fixed distribution on I1. Using Eq. (7.24) with τ = T
2

this

equals T
2
· OPTLP

(
MT

2

, B, T
2

)
which evaluates to T

4
. Likewise OPT

[T ]
LP (I2) equals

T · OPTLP

(
MT , B, T

)
, which evaluates to 3T

8
. Consider the performance of A on

I1. We have,

OPT
[T ]
LP (I1)

E[REW(A,I1)]
≥
(
T
4

)
/
(
α1

2

)
. (7.68)

Likewise on I2 we have,

OPT
[T ]
LP (I2)

E[REW(A,I2)]
≥
(

3T
8

)
/
(
α1

2
+ α2,2

)
. (7.69)
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Thus the competitive ratio of A is at least the maximum of the ratios in

Eq. (7.68) and Eq. (7.69). Thus we want to minimize this maximum and is achieved

when the two ratios are equal to each other.

Notice that the term α2,1 does not appear in Eq. (7.68) and Eq. (7.69). By

setting the term in Eq. (7.68) equal to the term in Eq. (7.69) and re-arranging,

α1 = 4α2,2. (7.70)

Moreover we have α1 + α2,2 ≤ B. Combining this with Eq. (7.70) we get

α1 ≤ 4B
5

= 2T
5

and the corresponding competitive ratio is at least
(
T
4

)
/
(
α1

2

)
≥ 5

4
.

By Lemma 19 with d = 1, for every j ∈ [2],

OPTFD(Ij)/E[REW(A, Ij)] ≥
5

4
−O

(
OPT

[T ]
LP

T

√
log T

B

)
.

7.8.2 The main lower bound: proof of Theorem 9(b)

To obtain the Ω(log T ) lower bound in Theorem 9(b), we extend Construction 2

to one with Ω(log T ) phases rather than just two. As before, the algorithm needs

to decide how much budget to save for the subsequent phases; without knowing

whether they would bring higher rewards or nothing. The construction is as follows,

see Figure 7.3 for a pictorial representation:

Construction 3. There is one resource with budget B, and two arms, denoted

A0, A1. Arm A0 is the “null arm” that has zero reward and zero consumption. The

consumption of arm A1 is 1 in all rounds. The rewards of A1 are defined as follows.

We partition the time into T
B

phases of duration B each (for simplicity, assume that
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B divides T ). We consider T
B

problem instances; for each instance Iτ , τ ∈
[
T
B

]
arm

A1 has positive rewards up to and including phase τ ; after that all rewards are 0. In

each phase σ ∈ [τ ], arm A1 has reward σ/T in each round.

Time, in T
B phases of B rounds each

1 τ τ + 1

ϵ 2ϵ τϵ 0

00

. . . . . .

. . .. . .0 0

Consumption=1

Consumption=0Null Arm

Arm 1

Figure 7.3: The lower-bounding construction for the Ω(log T ) lower bound.

The lower bound holds for a wide range of budgets B, as expressed by the

following lemma:

Lemma 20. Fix an absolute constant α ∈ (0, 1), and budget B in the interval

[Ω(log3 T ), O(T 1−α)]. Then any algorithm suffers OPTFD /E[REW] ≥ Ω(log T ) for

some problem instance in Construction 3.

In the rest of this subsection we prove Lemma 20. Fix any randomized algo-

rithmA. As before in this sub-section we are interested in the ratio OPTFD /E[REW(A)].

We argue that it has the claimed competitive ratio on at least one instance Iτ in the

construction 3. The proof proceeds in two parts. We first argue about the solution

structure of the optimal distribution for the construction 3 (we prove this formally

in Lemma 21). Next we characterize the expected number of times arm A1 is played

if A optimal algorithm in each of the phases. Combining the two we get Lemma 20.
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Structure of the optimal solution. Define OPTLP(Mτ∗ , B, τ
∗) to be the optimal

value of LP 7.8 on the instance Iτ . Then we have the following Lemma.

Lemma 21. For a given instance Iτ we have the following.

1. The optimal stopping time τ ∗ = Bτ .

2. OPTLP(Mτ∗ , B, τ
∗) ≤ 1

τ

∑
t∈[Bτ ]P(t)ε.

Proof. Note that (2) follows from (1). Indeed, given that the stopping time is Bτ ,

the optimal solution is to set X(1) = 1
τ

and X(0) = 1 − 1
τ

thus obtaining a total

reward of 1
τ

∑
t∈[Bτ ]P(t)ε. Thus it remains to prove (1).

First it is easy to prove that τ ∗ ≤ Bτ . Since there are no rewards after

time-step τ ∗, we have

∀t′ > 0 OPTLP(Mτ∗+t′ , B, τ
∗ + t′) =

1

τ + t′

∑
t∈[τ∗]

P(t)ε <
1

τ

∑
t∈[Bτ ]

P(t)ε.

Now we will argue that the optimal stopping time cannot be strictly lesser than

τ ∗. To do so, first we argue that for two stopping times t1 < t2 within the same

phase, the maximum objective is achieved for the stopping time t2. This implies

that the optimal stopping time has to be the last time step of some phase.

Consider times t1 < t2 such that P(t1) = P(t2) = τ . Then we want to claim

that

B

t1

∑
t∈[t1]

P(t)ε

 ≤ B

t2

∑
t∈[t2]

P(t)ε

 .

For contradiction assume the inequality does not hold. Then we have the following.

∑
t∈[t1]

P(t) >
t1
t2

∑
t∈[t2]

P(t)

 .
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Note that
∑

t∈[B(τ−1)]P(t) =
∑

t′∈[τ ] Bt
′ = B(τ−1)τ

2
. Thus we have

∑
t∈[t1]

P(t) =
B(τ − 1)τ

2
+ (t1 −B(τ − 1))τ,

∑
t∈[t2]

P(t) =
B(τ − 1)τ

2
+ (t2 −B(τ − 1))τ.

Therefore we have,

B(τ − 1)τ

2
+ (t1 −B(τ − 1))τ >

t1B(τ − 1)τ

2t2
+ (t2 −B(τ − 1))τ.

Further re-arranging, B(τ−1)
2

> t2. This is a contradiction since t2 is in phase

τ , so t2 ≥ B(τ − 1).

Next we argue that the optimal value is achieved when the stopping time is

in the last non-zero rewards phase. Consider two phases τ1 < τ2. Thus the ending

times are Bτ1 and Bτ2. To prove that the optimal value increases by stopping at

Bτ2, as opposed to Bτ1, we want to show that

1

τ1

∑
t∈[τ1]

Btε ≤ 1

τ2

∑
t∈[τ2]

Btε.

As before assume for a contradiction that this doesn’t hold. Then re-arranging

we get, τ1(τ1+1)
2

> τ1(τ2+1)
2

, which implies τ1 > τ2, contradiction. We conlude that

the stopping time is τ ∗ = Bτ .

Expected behavior of the optimal algorithm. Consider any randomized algo-

rithm A. The performance of A is then as follows.

OPT
[T ]
LP

E[REW(A)]
≥ max

1≤τ≤T/B

Bτ ·OPTLP(MBτ , B,Bτ)

E[REW(A)]
. (7.71)

132



Consider two consecutive instances Iτ and Iτ+1. The outcome matrix in the

phases 1, 2 , . . . , τ look identical in both these instances. Thus the expected number

of times arm A1 is chosen by algorithm A in phases 1, 2 , . . . , τ is identical. Let

ατ denote the expected number of times A plays arm A1 in phase τ on instances

I1, I2, , . . . , Iτ . The expected number of times arm A1 is played in phase τ on

instances Iτ+1, Iτ+2 , . . . , IT/B is set arbitrarily since this term does not appear

in the objective function (i.e., E[REW(A)]). Thus the maximum of the ratios in

Eq. (7.71) occurs when they are equal for all values τ . Therefore we want for every

1 ≤ τ ≤ T/B,
1
τ

∑
j∈[τ ] Bjε∑

j∈[τ ] jεαj
=

1
τ+1

∑
j∈[τ+1] Bjε∑

j∈[τ+1] jεαj
. (7.72)

Also note that α1 + α2 + . . .+ αT/B ≤ B, since the total budget is B and the

consumption is 1 in every round for arm A1 and 0 for arm A0. We will prove that

these lead to the following recurrence for the maximizing values of αj.

∀j ≥ 2 αj =
1

2j
α1. (7.73)

We will prove the recurrence Eq. (7.73) via induction. The base case is when

j = 2. Plugging in τ = 1 in Eq. (7.72) we have

1

α1

=
3/2

α1 + 2α2

.

This implies that α2 = 1
4
α1. Therefore we are done. Now consider the inductive

case; let all α up to ατ satisfy the recurrence Eq. (7.73). Consider the instance Iτ

and Iτ+1. From Eq. (7.72) we have,

1
τ

∑
j∈[τ ] jB

α1 +
∑τ

j=2 α1/2
=

1
τ+1

∑
j∈[τ+1] jB

α1 +
∑τ

j=2 α1/2 + (τ + 1)ατ+1

.
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Rearranging, we get that ατ+1 = 1
2(τ+1)

α1. This completes the inductive step.

Using the fact that α1(1 + 1/4 + 1/6 + . . . + B/2T ) ≤ B we have that α1 ≤

B
2H(T/B)

where H(n) denotes the nth Harmonic number. The value of Eq. (7.71) for

τ = 1 is the same at all other τ and has a value of B
α1
≥ 2H

(
T
B

)
≥ Ω

(
log T

B

)
≥

Ω (log T ). The second last inequality uses the well-known fact that ζ + log n ≤

H(n) ≤ ζ + log(n + 1) for an absolute constant ζ and the last inequality uses the

fact that B ∈
[
Ω(log3 T ), O(T 1−α)

]
.

Therefore we have that for every instance j ∈
[
T
B

]
,

OPT
[T ]
LP (Ij)

E[REW(A, Ij)]
≥ Ω(log T ).

Thus combining this with Lemma 19 we obtain

OPTFD

E[REW(A)]
≥ Ω(log T )−O

(
log1.5 T√

B

)
.

Since B ≥ Ω
(
log3 T

)
, we get that OPTFD

E[REW(A)]
≥ Ω(log T ).

7.8.3 Best dynamic policy: proof of Theorem 9(c)

Consider the following construction of the lower-bound example.

Construction 4. There is one resource with budget B, and two arms, denoted

A0, A1. Arm A0 is the ‘null arm’ that has zero reward and zero consumption. The

consumption of arm A1 is 1 in all rounds. The rewards of A1 are defined as follows.

We partition the time into T
B

phases of duration B each (for simplicity, assume that

B divides T ). We consider T
B

problem instances; for each instance Iτ , τ ∈ [T/B]

arm A1 has 0 reward in all phases except phase τ ; in phase τ it has a reward of 1

in each round.
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Lemma 22. Consider Construction 4 with any given time horizon T ≥ 2 and budget

B ≤
√
T . Let ALG be an arbitrary randomized algorithm for BwK. Then for one of

the problem instances,

OPTDP /E[REW] ≥ T/B2. (7.74)

Proof. Let n = T
B

be the number of phases in Construction 4. Let ALG be a

deterministic algorithm. Let REW denote its total reward, and let Eτ [·] denote

the expectation over the uniform-at-random choice of the problem instance Iτ . We

claim that

OPTDP /Eτ [REW] ≥ T/B2. (7.75)

Assume that ALG maximizes Eτ [REW] (over deterministic algorithms). Then it

satisfies the following:

• Within each phase, if ALG ever chooses to play arm A1, it does so in the first

round of the phase. If it receives a reward of 1 in this round, it plays A1 for

the rest of the phase. Else, it never plays A1 for the rest of this phase.

For each τ ∈ [n], let ατ denote the number of times ALG chooses arm

A1 in phase τ in problem instance Iτ . The expected reward of ALG over the

uniform-at-random choice of the problem instance Iτ is E[REW] = 1
n

∑
i∈[n] αi. Let

(απ(1), απ(2) , . . . , απ(k)) be the subsequence of (α1 , . . . , αn) which contains all

elements with non-zero values.

The key observation is as follows. The problem instances Iπ(τ−1) and Iπ(τ) are

identical until phase π(τ −1)−1. Since the feedback received by ALG until the first
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time it chooses armA1 in phase π(τ−1) is identical, it follows that απ(τ−1)−απ(τ) = 1.

Therefore, ∑
i∈[n]

αi =
∑
i∈[k]

απ(i) = k · απ(1) −
k(k − 1)

2
.

Noting that α1 ≤ B and k ≤ min(B, n) = B , we have:

E[REW] ≤ 1
n

∑
i∈[n]

αi < B2/n = B3/T.

Since OPTDP = B for every problem instance Iτ , Eq. (7.75) holds for ALG, and

therefore for any other deterministic algorithm. By Yao’s lemma (Motwani and

Raghavan [148]), for every randomized algorithm ALG there exists a problem in-

stance Iτ such that (7.74) holds.

We now use the same construction to prove Theorem 10.

Proof sketch of Theorem 10. We prove the Theorem by contradiction. Let B ≤
√
T .

For contradiction, consider an algorithm ALG for cBwK on a policy set Π such

that OPTFD(Π)/E[REW(ALG)] < T/B2. We will now use ALG to construct an

algorithm A for the Construction 4 such that OPTDP /E[REW(A)] < T/B2 for

every instance. This contradicts Lemma 22.

Consider a policy set Π with |n| policies. Every policy π ∈ Π maps contexts

in the range [1, T ] to the action set {A1, A0}. In particular, a policy πτ ∈ Π maps

contexts that lie in the range [B ∗ (τ −1)+1, B ∗ τ ] to arm A1 and all other contexts

to A0. A invokes ALG as a sub-routine with the policy set Π. At each time-step t,

A gives the context xt = t to ALG and plays the arm chosen by ALG.

For an instance Iτ in Construction 4, OPTFD(Π) is the total reward obtained

by choosing the action given by πτ in all time-steps. The total reward obtained is B,
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which equals OPTDP(Iτ ). Therefore, OPTFD(Π)/E[REW(ALG)] < T/B2 implies we

have OPTDP /E[REW(A)] < T/B2 for every instance Iτ , which is a contradiction.

7.8.4 Best fixed arm: proof of Theorem 9(d)

We use the following construction for the lower-bound.

Construction 5. There is one resource with budget B, and K arms denoted by

A1, A2 , . . . , AK. Arm AK is the ‘null arm’ that has zero reward and zero con-

sumption. There are K instances in the family. In instance Ij, all arms Aj′ where

j′ > j have 0 reward and 0 consumption in all time-steps. Consider an instance Ij

for some j ∈ [K − 1] and an arm j′ ≤ j. Arm Aj′ has a reward of 1
KK−j′ and con-

sumption of 1 in all time-steps in phase j′ and has a reward of 0 and consumption

of 0 in every other time-step. Thus the rewards and consumption are bounded in the

interval [0, 1] for every arm and every time-step in all instances in this family.

Lemma 23. Let T ≥ 2, 2 ≤ B ≤ T , K ≥ 3 be given parameters of the AdversarialBwK

problem. We show that there exists a family of instances with d = 1 shared resource

such that for every randomized algorithm A we have OPTFA

E[REW(A)]
is at least Ω(K) on

one of these instances.

Proof. First note that the best fixed arm in instance Ij is to pick arm Aj which

yields a total reward of B
KK−j .

Consider a randomized algorithm A. Observe that in the first j phases, the

instances Ij−1 and Ij have identical outcome matrices. Thus the expected number
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of times any arm Ak for k ∈ [K] is chosen in phases {1, 2 , . . . , j} should be the

same in both the instances. Let αk denote the expected number of times arm k is

played by A in phase k on instances Ik, Ik+1 , . . . , IK−1
13. Moreover we have that

α1 + α2 , . . . , αK−1 ≤ B.

To show the lower-bound we want to minimize the competitive ratio on every

instance for all possible values of α1, α2 , . . . , αK−1. For ease of notation denote

rj := 1
KK−j . Let αB denote the set of values to {αk}k∈[K−1] such that

∑
k∈[K−1] αk ≤

B. Thus,

OPTFA

E[REW(A)]
≥ min

αB

rkB∑
j∈[k] rjαj

. (7.76)

The ratio is minimized when all ratios in Eq. (7.76) are equal. We will show

via induction that this yields the following recurrence,

∀k ≥ 2 αk =

(
1− rk−1

rk

)
α1. (7.77)

Combining this with the condition that
∑

k∈[K−1] αk ≤ B, this yields the

condition α1 ≤ B

K− 1
K

. Moreover the minimizing value in Eq. (7.76) is K − 1
K

which

proves Lemma 23.

We will now prove the recurrence Eq. (7.77). Consider the base case with

k = 2. Equalizing the first two terms in Eq. (7.76) we get

r1B

r1α1

=
r2B

r1α1 + r2α2

.

Re-arranging we obtain that α2 =
(

1− r1
r2

)
α1. We will now prove the induc-

tive case. Let the recurrence be true for all 1 ≤ k ≤ k′. Consider the case k = k′+1.

13This has to be the same in all instances since the outcome matrix is identical until phase k in

all these instances
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Setting the k′ and k′ + 1 ratios in Eq. (7.76) equal, we obtain

rk′B∑
j∈[k′] rjαj

=
rk′+1B∑
j∈[k′+1] rjαj

. (7.78)

Moreover from the inductive hypothesis we have αj =
(

1− rj−1

rj

)
α1 for every

j ≤ k′. Thus we have

∑
j∈[k′]

rjαj = rk′α1

∑
j∈[k′+1]

rjαj = rk′α1 + rk′+1αk′+1.

Plugging this back in Eq. (7.78) we get

rk′B

rk′α1

=
rk′+1B

rk′α1 + rk′+1αk′+1

.

Rearranging we get αk′+1 =
(

1− r′k
rk′+1

)
α1. This completes the induction.

7.9 Extensions

We obtain several extensions which highlight the modularity of LagrangeBwK:

we apply Theorem 6 and Theorem 7 with appropriately chosen primal algorithm

ALG1, and immediately obtain strong performance guarantees.14 We tackle four

well-known scenarios:

• full feedback (e.g., Arora et al. [21], Freund and Schapire [88], Littlestone and

Warmuth [130]): in each round, the algorithm chooses an action and observes

14For these theorems to hold, ALG1 needs to satisfy regret bound (7.4) only against adaptive

adversaries that arise in the repeated Lagrange game in the corresponding extension, not against

arbitrary adaptive adversaries.
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the outcomes of all possible actions; this is a classic scenario in online machine

learning.

• combinatorial semi-bandits (e.g., Audibert et al. [23], György et al. [101], Kale

et al. [113]): actions are feasible subsets of “atoms”. The atoms in the chosen

action have individual outcomes that are observed and add up to the action’s

total outcome. Typical motivating example are subsets/lists of news articles,

ads, or web search results.

• contextual bandits with policy sets (e.g., Agarwal et al. [5], Dud́ık et al. [80],

Langford and Zhang [127]): before each round, a context is observed, and the

algorithm competes against the best policy (mapping from context to actions)

in a given policy class. In a typical application scenario, the context includes

known features of the current user.

• bandit convex optimization (starting from Flaxman et al. [86], Kleinberg [120],

with recent advances Bubeck et al. [44, 45], Hazan and Levy [105]). Here

the set of actions is a convex set X ⊂ RK . For each round t, the adversary

chooses a concave function ft : X → [0, 1] such that the reward for chosen

action x ∈ X is ft(x).

Formalities. To simplify the statements, we make the following assumptions with-

out further mention:

• The dual algorithm, ALG2, is always Hedge, with the associated regret bound

from 7.6. For high-probability regret bounds, δ = 1
T

is a fixed and known
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failure probability parameter.

• For Stochastic BwK, one resource is the dummy resource (with consumption

B
T

for each arm). Algorithm LagrangeBwK is run with parameters B0 = B and

T0 = T .

• For Adversarial BwK, one of the arms is a null arm that has zero reward and

zero resource consumption. Algorithm 6 is run with scale parameter κ ≥ d+1

and range [gmin, gmax] = [1, T ].

A typical corollary. All our corollaries have the following shape, for some regret

term reg:

(C1) In the stochastic version, algorithm LagrangeBwK achieves, with probability

at least 1− 1
T

,

OPTDP−REW ≤ O
(
T
B
· reg

)
.

(C2) In the adversarial version, Algorithm 6 achieves

E[REW]

OPTFD

≥
1−O(reg)

(
1

OPTFD
+ 1

κB

)
κ2 dlogκ T e

.

Corollaries similar to (C2) can be achieved for Algorithm 7, too; we omit them for

ease of exposition.

7.9.1 BwK with full feedback

In the full-feedback version of BwK, the entire outcome matrix Mt is revealed

to the algorithm after each round t. Accordingly, we can use Hedge as the primal
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algorithm ALG1. The effect is, essentially, that the dependence on K, the number

of arms, in the regret term becomes logarithmic rather than
√
K.

Corollary 1. Consider BwK with full feedback. Using Hedge as the primal algo-

rithm, we obtain corollaries (C1) and (C2) with regret term reg =
√
T ln (dKT ).

Adversarial BwK with full feedback have not been studied before. For the

stochastic version, the regret bound is unsurprising: one expects to obtain a similar

improvement with each of the three other algorithms in the prior work on Stochastic

BwK by tracing the “confidence terms” through the analysis. The significance here

is that we obtain this result as an immediate corollary.

7.9.2 Combinatorial Semi-Bandits with Knapsacks

Following Sankararaman and Slivkins [163], we consider Combinatorial Semi-

BwK, a common generalization of BwK and combinatorial semi-bandits (e.g., Au-

dibert et al. [23], György et al. [101], Kale et al. [113]). In this problem, actions

correspond to subsets of some finite ground set Ω of size n, whose elements are

called atoms. There is a fixed family F ⊂ 2Ω of feasible actions. For each round

t, there is an outcome vector ot,e ∈ [0, 1
n
]d+1 for each round atom e ∈ Ω, with the

same semantics as the actions’ outcome vectors. If an action S ⊂ Ω is chosen, the

outcome vectors ot,e are observed for all atoms e ∈ S, and the action’s outcome is

the sum Mt(S) =
∑

e∈S ot,e ∈ [0, 1]d. In the adversarial case, all outcome vectors

ot,e, t ∈ [T ], e ∈ Ω are chosen by an adversary arbitrarily before round 1. In the

stochastic case, the atomic outcome matrix (ot,e : e ∈ Ω) is drawn independently in
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each round t from some fixed distribution. Combinatorial semi-bandits, as studied

previously, is a special case with no resource constraints (d = 0).

Typical motivating examples involve ad/content personalization scenarios. Atoms

can correspond to items news articles, ads, or web search results, and actions are

subsets that satisfy some constraints on quantity, relevance, or diversity of items.

One can also model ranked lists of atoms: then atoms are rank-item pairs, and each

feasible action S ⊂ Ω satisfies a constraint that each rank between 1 and |S| is

present in exactly one chosen rank-item pair.

A naive application of our main results suffers from regret terms that are pro-

portional to
√
|F|, which may be exponential in the number of atoms n. Instead,

the work on combinatorial semi-bandits features regret bounds that scale polynomi-

ally in n. This is what we achieve, too. We use an algorithm from Neu and Bartók

[152] which solves combinatorial semi-bandits in the absence of resource constraints.

This algorithm satisfies a high-probability regret bound (7.4) against an adaptive

adversary, with Rδ(T ) = O(
√
nT log(1/δ)). 15

Corollary 2. Consider Combinatorial Semi-BwK with n atoms. Using the algo-

rithm from Neu and Bartók [152] as the primal algorithm, we obtain corollaries

(C1) and (C2) with regret term reg =
√
nT log T .

The adversarial version of Combinatorial Semi-BwK has not been studied be-

fore.

15Prior work (Neu and Bartók [152], Sankararaman and Slivkins [163]) posits that atoms’ per-

round rewards/consumptions lie in the range [0, 1], rather than [0, 1
n ], so their stated regret bounds

should be recaled accordingly.
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The stochastic version has been studied in Sankararaman and Slivkins [163]

when the action set is a matroid, achieving regret

Õ
(

OPTDP

√
n/B +

√
T/n+

√
OPTDP

)
.

This regret bound becomes Õ(
√
nT ) in the regime when B and OPTDP are Ω(T )

(see Footnote 15). We achieve the same regret bound for this regime, without

the matroid assumption and without any extra work. However, the regret bound

in Sankararaman and Slivkins [163] can be substantially better than ours when

OPTDP � T .

7.9.3 Contextual Bandits with Knapsacks

Following Agrawal et al. [14], Badanidiyuru et al. [31], we consider Contextual

Bandits with Knapsacks (cBwK ), a common generalization of BwK and contextual

bandits with policy sets (e.g., Agarwal et al. [5], Dud́ık et al. [80], Langford and Zhang

[127]). The only change in the protocol, compared to BwK, is that in the beginning

of each round t a context xt ∈ X arrives and is observed by the algorithm before

it chooses an action. The context set X is arbitrary and known. In the adversarial

version (Adversarial cBwK ) both xt and the outcome matrix Mt is chosen by an

adversary. In the stochastic version (Stochastic cBwK ) the pair (xt,Mt) is chosen

independently from some fixed but unknown distribution over such pairs.

In cBwK one is also given a finite set Π of policies : deterministic mappings

from contexts to actions.16 Essentially, the algorithm competes with the best course

16W.l.o.g. assume that Π contains all constant policies, i.e., all policies that always evaluate to
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of action restricted to these policies. For a formal definition, let us interpret cBwK

as a BwK problem with action set Π, denote this problem as BwK(Π). In other

words, actions in BwK(Π) are policies in cBwK. An algorithm for BwK(Π) is oblivious

to context arrivals. It chooses a policy πt ∈ Π in each round t, and receives an

outcome for this policy: namely, the outcome for action π(xt). We are interested

in the usual benchmarks for this problem, the best algorithm OPTDP and the best

fixed distribution OPTFD (where both benchmarks are constrained to use policies in

Π); denote them OPTDP(Π) and OPTFD(Π), respectively.

Without budget constraints (i.e., with B = T ), this is exactly contextual

bandits with policy set Π. Both benchmarks then reduce to the standard benchmark

of the best fixed policy.

Background: algorithm EXP4.P. We use EXP4.P (Beygelzimer et al. [40]),

an algorithm for the contextual version of adversarial online learning with bandit

feedback. The algorithm operates according to the protocol in Figure 7.4.

We are interested in regret bounds for EXP4.P relative to the best fixed policy:

OPTΠ = maxπ∈Π

∑
t∈[T ] ft(π(xt)).

For each round t, the pair (xt,gt) induces a payoff vector ft ∈ [bmin, bmax]Π on

policies:

ft(π) = gt(π(xt)) ∀π ∈ Π.

Theorem 11 (Beygelzimer et al. [40]). Fix failure probability δ > 0, policy set Π,

and payoff range [bmin, bmax]. Then algorithm EXP4.P (appropriately tuned) satisfies

the same action.
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Given: action set [K], context set X , policy set Π, payoff range [bmin, bmax].

In each round t ∈ [T ],

1. the adversary chooses a context xt ∈ X and a payoff vector gt ∈

[bmin, bmax]K ;

2. the algorithm chooses a distribution pt over Π (without seeing xt);

3. a policy πt ∈ Π is drawn independently from pt;

4. algorithm’s chosen action is defined as at = πt(xt) ∈ [K];

5. payoff gt(at) is received by the algorithm.

Figure 7.4: Adversarial contextual bandits

the following regret bound:

Pr
[

OPTΠ −
∑

t∈[T ] ft(πt) ≤ (bmax − bmin)Rδ(T )
]
≥ 1− δ, (7.79)

with regret term Rδ(T ) = O
(√

τK log(KT |Π|/δ)
)

.

Our solution for cBwK. We solve cBwK by reducing it to BwK(Π), and treating it

as a BwK problem. A naive solution simply posits |Π| arms and directly applies the

machinery developed earlier in this paper. This results in
√
|Π| dependence in regret

bounds, which is unsatisfactory, as the policy set may be very large. Instead, we use

EXP4.P as the primal algorithm (ALG1). We interpret EXP4.P as an algorithm

for (non-contextual) adversarial online learning, with action set Π. It is easy to see

that Theorem 11 provides regret bound (7.4) under this interpretation. Therefore,
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we obtain the following:

Corollary 3. Consider contextual bandits with knapsacks, with policy set Π. Using

EXP4.P as the primal algorithm, we obtain corollaries (C1) and (C2) with regret

term reg =
√
TK ln (dKT |Π|). The benchmarks are OPTDP = OPTDP(Π) and

OPTFD = OPTFD(Π).

Adversarial cBwK has not been studied before. The regret bound for the

adversarial case is meaningful only if B >
√
T . This is essentially inevitable in light

of the lower bound in Theorem 10.

Stochastic cBwK has been studied in Agrawal et al. [14], Badanidiyuru et al.

[31], achieving regret bound

O(reg)(1 + OPTDP(Π)/B), (7.80)

where the reg term is the same as in Corollary 3. Whereas the regret bound from

Corollary 3 is O(reg · T/B). Note that we match (7.80) in the regime OPTDP(Π) >

Ω(T ). Our regret bound is optimal, up to logarithmic factors, in the regime B >

Ω(T ).17

Discussion. Our algorithms are slow, as the per-round running time of EXP4.P is

proportional to |Π|. The state-of-art approach to computational efficiency in contex-

tual bandits is oracle-efficient algorithms, which make only a small number of calls

to an oracle that finds the best policy in Π for a given data set. In particular, prior

work for Stochastic cBwK (Agrawal et al. [14]) obtains an oracle-efficient algorithm

17This is due to the min
(
T, Ω(

√
KT log(|Π|)/ log(K)

)
regret bound, which holds for contextual

bandits Agarwal et al. [4].
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with regret bound as in (7.80). To obtain oracle-efficient algorithms for cBwK in

our framework, both for the stochastic and adversarial versions, it suffices to replace

EXP4.P with an oracle-efficient algorithm for adversarial contextual bandits that

obtains regret bound (7.79), possibly with a larger regret term Rδ. Such algorithms

almost exist: a recent breakthrough (e.g., Rakhlin and Sridharan [156], Syrgkanis

et al. [173, 174]) obtains algorithms with similar regret bounds, but only for expected

regret.

7.9.4 Bandit Convex Optimization with Knapsacks

We consider Bandit Convex Optimization with Knapsacks (BCOwK ), a com-

mon generalization of BwK and bandit convex optimization. We define BCOwK as

a version of BwK, where the action set X is a convex subset of RK . For each round

t, there is a concave function ft : X → [0, 1] and convex functions gt,i : X → [0, 1],

for each resource i, so that the reward for choosing action x ∈ X in this round is

ft(x) and consumption of each resource i is gt,i(x). In the stochastic version, the

tuple of functions (ft; gt,1 , . . . , gt,d) is sampled independently in each round t from

some fixed distribution (which is not known to the algorithm). In the adversarial

version, all these tuples are chosen by an adversary before the first round.

Neither stochastic nor adversarial version of BCOwK have been studied in

prior work (but see the discussion of constrained online convex optimization in

Section 7.2). Bandit convex optimization, as studied previously, is a special case

with no resource constraints (d = 0).

The primal algorithm ALG1 in LagrangeBwK faces an instance of BCO (with
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an adaptive adversary). This is because the Lagrange function (7.10) is a concave

function of the action, as sum of concave functions. For our primal algorithm, we

use a recent breakthrough on BCO due to Bubeck et al. [45]. This algorithm satisfies

the high-probability regret bound (7.4) against an adaptive adversary, with regret

term

Rδ(T ) = O(K9.5 log7(T )
√
T log(1/δ)).

We assume the existence of a null arm: a point x ∈ X such that ft(x) =

gt,i(x) = 0 for each resource i except the “dummy resource”. (Recall that we

posit the “dummy resource” – a resource whose consumption is B/T for each arm

– for the stochastic version.) Unlike elsewhere in this paper, this assumption is

not without loss of generality: indeed, the null arm should be “embedded” into X

without breaking the convexity/concavity properties. Moreover, we assume that the

null arm lies in the interior of X .

Corollary 4. Consider BCOwK for a given convex set X ⊂ RK. Using the algo-

rithm from Bubeck et al. [45] as the primal algorithm, we obtain corollaries (C1)

and (C2) with regret term reg = K9.5 log7.5(T )
√
T .

Remark 11. LagrangeBwK framework extends to infinite action sets: everything

carries over, as long as 7.11 holds. (Essentially, we never take union bounds over

actions, and we can replace max and sums over actions with sup and integrals.)

For BCOwK, 7.11 is a statement about constrained convex optimization programs.

According to Slater’s condition (see Eq. (5.27) in Boyd and Vandenberghe [41]),

it suffices to have a point x in the interior of X such that gt,i(x) < B/T for each
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resource i ∈ [d] other than the dummy resource (or any other resource whose con-

sumption is the same in all rounds). One such point is the null arm.
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Chapter 8: Better Bounds for Combinatorial Semi-bandits with Knap-

sacks

8.1 Introduction

In this chapter we consider one extension of Stochastic BwK, namely Combi-

natorial Semi-Bandits with Knapsacks. We obtain better bounds for this problem

than what was achieved in Chapter 71. This extension combines two lines of work

related to bandits: on bandits with knapsacks (BwK) (Badanidiyuru et al. [33]) and

on combinatorial semi-bandits (György et al. [101]). In combinatorial semi-bandits,

actions correspond to subsets of some “ground set”, rewards are additive across the

elements of this ground set (atoms), and the reward for each chosen atom is revealed

(semi-bandit feedback). A paradigmatic example is an online routing problem, where

atoms are edges in a graph, and actions are paths.

8.1.1 Formal Model

Our model, called Semi-Bandits with Knapsacks (SemiBwK) is a generalization

of multi-armed bandits (henceforth, MAB) with i.i.d. rewards. As such, in each

round t = 1, 2, . . . , T , an algorithm chooses an action St from a fixed set of actions

1This work was done and published before that of Chapter 7.
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F , and receives a reward µt(St) for this action which is drawn independently from

a fixed distribution that depends only on the chosen action. The number of rounds

T , a.k.a. the time horizon, is know2.

There are d resources being consumed by the algorithm. The algorithm starts

out with budget Bj ≥ 0 of each resource j. All budgets are known to the algorithm.

If in round t action S ∈ F is chosen, the outcome of this round is not only the

reward µt(S) but the consumption Ct(S, j) of each resource j ∈ [d]. We refer

to Ct(S) = (Ct(S, j) : j ∈ [d]) as the consumption vector.3 Following prior work

on BwK, we assume that all budgets are the same: Bj = B for all resources j.4

Algorithm stops as soon as any one of the resources goes strictly below 0. The round

in which this happens is called the stopping time and denoted τstop. The reward

collected in this last round does not count; so the total reward of the algorithm is

REW =
∑

t<τstop
µt(St).

Actions correspond to subsets of a finite ground set A, with n = |A|; we refer

to elements of A as atoms. Thus, the set F of actions corresponds to the family

of “feasible subsets” of A. The rewards and resource consumption is additive over

the atoms: for each round t and each atom a there is a reward µt(a) ∈ [0, 1] and

consumption vector Ct(a) ∈ [0, 1]d such that for each action S ⊂ F it holds that

µt(S) =
∑

a∈S µt(a) and Ct(S) =
∑

a∈S Ct(a).

2As opposed to Chapter 7, throughout this chapter we use n to denote the number of arms, j

to denote the index of a resource and k to denote the maximum number of atoms in any action.
3We use bold font to indicate vectors and matrices.
4This is w.l.o.g. because we can divide all consumption of each resource j by Bj/minj′∈[d]Bj′ .

Effectively, B is the smallest budget in the original problem instance.
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We assume the i.i.d. property across rounds, but allow arbitrary correlations

within the same round. Formally, for a given round t we consider the n × (d + 1)

“outcome matrix” (µt(a),Ct(a) : a ∈ A), which specifies rewards and resource con-

sumption for all resources and all atoms. We assume that the outcome matrix is

chosen independently from a fixed distribution DM over such matrices. The distribu-

tion DM is not revealed to the algorithm. The mean rewards and mean consumption

is denoted µ(a) := E[µt(a)] and C(a) := E[Ct(a)]. We extend the notation to

actions, i.e., to subsets of atoms: µ(S) :=
∑

a∈S µ(a) and C(S) :=
∑

a∈S C(a).

An instance of SemiBwK consists of the action set F ⊂ 2[n], the budgets B =

(Bj : j ∈ [d]), and the distribution DM. The F and B are known to the algorithm,

and DM is not. As explained in the introduction, SemiBwK subsumes Bandits with

Knapsacks (BwK) and semi-bandits. BwK is the special case when F consists

of singletons, and semi-bandits is the special case when all budgets are equal to

Bj = nT (so that the resource consumption is irrelevant).

Following the prior work on BwK, we compete against the “optimal all-knowing

algorithm” (Definition 1): an algorithm that optimizes the expected total reward

for a given problem instance; its expected total reward is denoted by OPTDP. As

observed in Badanidiyuru et al. [33], OPTDP can be much larger (e.g., factor of 2

larger) than the expected cumulative reward of the best action, for a variety of

important special cases of BwK. Our goal is to minimize regret, defined as OPTDP

minus algorithm’s total reward.
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8.2 Challenges and Contribution

8.2.1 Our Contribution

We define a common generalization of combinatorial semi-bandits and BwK,

termed Combinatorial Semi-Bandits with Knapsacks (SemiBwK). We focus on the

i.i.d. environment: in each round, the “outcome” is drawn independently from a

fixed distribution over the possible outcomes. Here the “outcome” of a round is the

matrix of reward and resource consumption for all atoms.5 We design an algorithm

for SemiBwK, achieving regret rates that are comparable with those for BwK and

combinatorial semi-bandits.

Specifics are as follows. As usual, we assume “bounded outcomes”: for each

atom and each round, rewards and consumption of each resource is non-negative

and at most 1. Regret is relative to the expected total reward of the best all-

knowing policy, denoted OPTDP. We upper-bound the regret in terms of the relevant

parameters: time horizon T , (smallest) budget B, number of atoms n, and OPTDP

itself (which may be as large as nT ). We obtain

reg ≤ Õ(
√
n)(OPTDP /

√
B +

√
T + OPTDP). (8.1)

The “shape” of the regret bound is consistent with prior work: the OPTDP /
√
B ad-

5Our model allows arbitrary correlations within a given round, both across rewards and con-

sumption for the same atom and across multiple atoms. Such correlations are essential in ap-

plications such as dynamic pricing and dynamic assortment. E.g., customers’ valuations can be

correlated across products, and algorithm earns only if it sells; see Section 8.7 for details.
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ditive term appears in the optimal regret bound for BwK, and the
√
T and

√
OPTDP

additive terms are very common in regret bounds for MAB. The per-round running

time is polynomial in n, and near-linear in n for some important special cases.

Our regret bound is optimal up to polylog factors for paradigmatic special

cases. BwK is a special case when actions are atoms. For OPTDP > Ω(T ), the

regret bound becomes Õ(T
√
n/B+

√
nT ), where n is the number of actions, which

coincides with the lower bound from Badanidiyuru et al. [33]. Combinatorial semi-

bandits is a special case with B = nT . If all feasible subsets contain at most k atoms,

we have OPTDP ≤ kT , and the regret bound becomes Õ(
√
knT ). This coincides with

the Ω(
√
knT ) lower bound from Kveton et al. [124].

Our main result assumes that the action set, i.e., the family of feasible subsets

of atoms, is described by a matroid constraint.6 This is a rather general scenario

which includes many paradigmatic special cases of combinatorial semi-bandits such

as cardinality constraints, partition matroid constraints, and spanning tree con-

straints. We also assume that B > Ω̃(n+
√
nT ).

Our model captures several application scenarios, incl. dynamic pricing, dy-

namic assortment, repeated auctions, and repeated bidding. We work out these

applications, and explain how our regret bounds improve over prior work.

6Matroid is a standard notion in combinatorial optimization which abstracts and generalizes

linear independence.
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8.2.2 Challenges and Techniques

Generic challenges in combinatorial semi-bandits concern handling exponen-

tially many actions (both in terms of regret and in terms of the running time), and

taking advantage of the additional feedback. And in SemiBwK, one needs to deal

with distributions over subsets of atoms, rather than “just” with distributions over

actions.

Our algorithm connects a technique from BwK and a randomized rounding

technique from combinatorial optimization. (With three existing BwK algorithms

and a wealth of approaches for combinatorial optimization, choosing the techniques

is a part of the challenge.)

We build on a BwK algorithm from Agrawal and Devanur [11], which combines

linear relaxations and a well-known “optimism-under-uncertainty” paradigm. A

generalization of this algorithm to SemiBwK results in a fractional solution x, a vector

over atoms. Randomized rounding converts x into a distribution over feasible subsets

of atoms that equals x in expectation. It is crucial (and challenging) to ensure that

this distribution contains enough randomness so as to admit concentration bounds

not only across rounds, but also across atoms. Our analysis “opens up” a fairly

technical proof from prior work and intertwines it with a new argument based on

negative correlation.

We present our algorithm and analysis so as to “plug in” any suitable random-

ized rounding technique. This makes our presentation more lucid, and also leads to

faster running times for important special cases.
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8.2.3 Solving SemiBwK using prior work.

Solving SemiBwK using an algorithm for BwK would result in a regret bound

like (8.1) with n replaced with the number of actions. The latter could be on the

order of nk if each action can consist of at most k atoms, or perhaps even exponential

in n.

SemiBwK can be solved as a special case of a much more general linear-contextual

extension of BwK from Agrawal and Devanur [11, 12]. In their model, an algorithm

takes advantage of the combinatorial structure of actions, yet it ignores the ad-

ditional feedback from the atoms. Their regret bounds have a worse dependence

on the parameters, and apply for a much more limited range of parameters. Fur-

ther, their per-round running time is linear in the number of actions, which is often

prohibitively large.

To compare the regret bounds, let us focus on instances of SemiBwK in which

at most one unit of each resource is consumed in each round. (This is the case in all

our motivating applications, except repeated bidding.) Then Agrawal and Devanur

[11, 12] assume B >
√
nT 3/4, and achieve regret Õ(n

√
T OPTDP

B
+n2
√
T ). 7 It is easy

to see that we improve upon the range and upon both summands. In particular, we

7Agrawal and Devanur [11, 12] state regret bound with term +n
√
T rather than +n2

√
T , but

they assume that per-round rewards lie in [0, 1]. Since per-round rewards can be as large as n in

our setting, we need to scale down all rewards by a factor of n, apply their regret bound, and then

scale back, which results in the regret bound with +n2
√
T . When per-round consumption can be as

large as n, regret bound from Agrawal and Devanur [11, 12] becomes Õ(n2 OPTDP

√
T/B+n2

√
T )

due to rescaling.
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improve both summands by the factor of n
√
n in a lucid special case when B > Ω(T )

and OPTDP < O(T ).8

8.3 Additional Related Work

Combinatorial semi-bandits were studied by György et al. [101], in the ad-

versarial setting. In the i.i.d. setting, in a series of works by Anantharam et al.

[19], Chen et al. [65], Combes et al. [68], Gai et al. [90, 91], Kveton et al. [126], an

optimal algorithm was achieved. This result was then extended to atoms with linear

rewards by Wen et al. [187]. Kveton et al. [124] obtained improved results for the

special case when action set is described by a matroid. Some other works studied

a closely related “cascade model”, where the ordering of atoms matters (Katariya

et al. [117], Kveton et al. [125], Zong et al. [189]). Contextual semi-bandits have

been studied in Krishnamurthy et al. [123], Wen et al. [187].

Randomized rounding schemes (RRS) come from the literature on approxi-

mation algorithms in combinatorial optimization (see Papadimitriou and Steiglitz

[153], Williamson and Shmoys [188] for background). RRS were introduced in

Raghavan and Tompson [154]. Subsequent work Asadpour et al. [22], Chekuri et al.

[59, 60], Gandhi et al. [92] developed RRS which correlate the rounded random

variables so as to guarantee sharp concentration bounds.

8In prior work on combinatorial bandits (without constraints), semi-bandit feedback improves

regret bound by a factor of
√
n, see the discussion in Kveton et al. [126].
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8.4 Preliminaries

8.4.1 Combinatorial constraints.

Action set F is given by a combinatorial constraint, i.e., a family of subsets.

Treating subsets of atoms as n-dimensional binary vectors, F corresponds to a finite

set of points in Rn. We assume that the convex hull of F forms a polytope in Rn.

In other words, there exists a set of linear constraints over Rn whose set of feasible

integral solutions is F . We call such F linearizable; the convex hull is called the

polytope induced by F .

Our main result is for matroid constraints, a family of linearizable combinato-

rial constraints which subsumes several important special cases such as cardinality

constraints, partition matroid constraints, spanning tree constraints and transversal

constraints. Formally, F is a matroid if it contains the empty set, and satisfies two

properties: (i) if F contains a subset S, then it also contains every subset of S, and

(ii) for any two subsets S, S ′ ∈ F with |S| > |S ′| it holds that S ′ ∪{a} ∈ F for each

atom a ∈ S \ S ′.

We incorporate prior work on randomized rounding for linear programs. Con-

sider a linearizable action set F with induced polytope P ⊂ [0, 1]n. The randomized

rounding scheme (henceforth, RRS) for F is an algorithm which inputs a feasible

fractional solution x ∈ P and the linear equations describing P , and produces a

random vector Y over F . We consider RRS’s such that E[Y] = x and Y is nega-

tively correlated (see below for definition); we call such RRS’s negatively correlated.
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Several such RRS are known: e.g., for cardinality constraints and bipartite match-

ing (Gandhi et al. [92]), for spanning trees (Asadpour et al. [22]), and for matroids

(Chekuri et al. [59]).

8.4.2 Negative correlation.

Let X = (X1, X2, . . . , Xm) denote a family of random variables which take

values in [0, 1]. Let X := 1
m

∑m
i=1Xi be the average, and µ := E[X].

Family X is called negatively correlated if

E

[∏
i∈S

Xi

]
≤
∏
i∈S

E[Xi] ∀S ⊆ [m] (8.2)

E

[∏
i∈S

(1−Xi)

]
≤
∏
i∈S

E[1−Xi] ∀S ⊆ [m] (8.3)

Independent random variables satisfy both properties with equality. For in-

tuition: if X1, X2 are Bernoulli and (8.2) is strict, then X1 is more likely to be 0 if

X2 = 1.

Negative correlation is a generalization of independence that allows for similar

concentration bounds, i.e., high-probability upper bounds on |X −µ|. However, our

analysis does not invoke them directly. Instead, we use a concentration bound given

a closely related property:

E

[∏
i∈S

Xi

]
≤ (1

2
)|S| ∀S ⊆ [m]. (8.4)

Theorem 12 (Impagliazzo and Kabanets [110]). If (8.4), then for some absolute

constant c,

Pr[X ≥ 1
2

+ η] ≤ c · e−2mη2

(∀η > 0) (8.5)
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8.4.3 Confidence radius.

We bound deviations |X − µ| in a way that gets sharper when µ is small,

without knowing µ in advance. (We use the notation X , X, µ as above.) To this

end, we use the notion of confidence radius from Agrawal and Devanur [11], Babaioff

et al. [28], Badanidiyuru et al. [33], Kleinberg et al. [121]9:

Radα(x,m) =
√
αx/m+ α/m. (8.6)

If random variables X are independent, then event

|X − µ| < Radα(X,m) < 3 Radα(µ,m) (8.7)

happens with probability at least 1 − O(e−Ω(α)), for any given α > 0. We use this

notion to define upper/lower confidence bounds on the mean rewards and mean

resource consumption. Fix round t, atom a, and resource j. Let µ̂t(a) and Ĉt(a, j)

denote the empirical average of the rewards and resource-j consumption, resp.,

between rounds 1 and t − 1. Let Nt(a) be the number of times atom a has been

chosen in these rounds (i.e., included in the chosen actions). The confidence bounds

are defined as

C±t (a, j) = proj( Ĉ(a, j)± Radα(Ĉ(a, j), Nt(a)) )

µ±t (a) = proj ( µ̂(a)± Radα(µ̂(a), Nt(a)) ) (8.8)

where proj(x) := arg miny∈[0,1] |y − x| denotes the projection into [0, 1]. We always

use the same parameter α = cconf log(ndT ), for an appropriately chosen absolute

9For instance Theorem 2.1 in Badanidiyuru et al. [33]
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constant cconf. We suppress α and cconf from the notation. We use a vector notation

µ±t and C±t (j) to denote the corresponding n-dimensional vectors over all atoms a.

By (8.7), with probability 1−O(e−Ω(α)) the following hold.

µ(a) ∈ [µ−t (a), µ+
t (a)]

C(a, j) ∈ [C−(a, j), C(a, j)+]

8.4.4 Matroid constraints

Recall that in SemiBwK, we have a finite ground set whose elements are called

“atoms”, and a family F of “feasible subsets” of the ground set which are the actions.

To be consistent with the literature on matroids, the ground set will be denoted E.

Family F of subsets of E is called a matroid if it satisfies the following properties:

• Empty set: The empty set φ is present in F

• Hereditary property: For two subsets X, Y ⊆ E such that X ⊆ Y , we have

that

Y ∈ F =⇒ X ∈ F

• Exchange property: For X, Y ∈ F and |X| > |Y |, we have that

∃e ∈ X \ Y : Y ∪ {e} ∈ F

Matroids are linearizable, i.e., the convex hull of F forms a polytope in RE.

(Here subsets of F are interpreted as binary vectors in RE.) In other words, there

exists a set of linear constraints whose set of feasible integral solutions is F . In
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fact, the convex hull of F , a.k.a. the matroid polytope, can be represented via the

following linear system:

x(S) ≤ rank(S) ∀S ⊆ E

x(e) ∈ [0, 1]E ∀e ∈ E.
(LP-Matroid)

Here x(S) :=
∑

e∈S x(e), and rank(S) = max{|Y | : Y ⊆ S, Y ∈ F} is the “rank

function” for F .

F is indeed the set of all feasible integral solutions of the above system. This

is a standard fact in combinatorial optimization, e.g., see Theorem 40.2 and its

corollaries in Schrijver [168].

We will now describe some well-studied special cases of matroids. That they

indeed are special cases of matroids is well-known, we will not present the corre-

sponding proofs here.

In all LPs presented below, we have variables x(e) for each arom e ∈ E, and

we use shorthand x(S) :=
∑

e∈S x(e) for S ⊂ E.

Cardinality constraints. Cardinality constraint is defined as follows: a subset S

of atoms belongs to F if and only if |S| ≤ K for some fixed K. This is perhaps the

simplest constraint that our results are applicable to. In the context of SemiBwK,

each action selects at most K atoms.

The corresponding induced polytope is as follows:

x(E) ≤ K

x(e) ∈ [0, 1] ∀e ∈ E.
(LP-Cardinality)

Partition matroid constraints. A generalization of cardinality constraints, called

partition matroid constraints, is defined as follows. Suppose we have a collection
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B1, B2, . . . , Bk of disjoint subsets of E, and numbers d1, d2, . . . , dk. A subset S of

atoms belongs to F if and only if |S ∩ Bi| ≤ di for every i. Partition matroid

constraints appear in several applications of SemiBwK such as dynamic pricing, ad-

justing repeated auctions, and repeated bidding. In these applications, each action

selects one price/bid for each offered product. Also, partition matroid constraints

can model clusters of mutually exclusive products in dynamic assortment applica-

tion.

The induced polytope is as follows:

x(Bi) ≤ di ∀i ∈ [k]

x(e) ∈ [0, 1] ∀e ∈ E.
(LP-PartitionMatroid)

8.5 Main algorithm (SemiBwK-RRS)

Let us define our main algorithm, called SemiBwK-RRS. The algorithm builds

on an arbitrary RRS for the action set F . It is parameterized by this RRS, the

polytope P induced by F (represented as a collection of linear constraints), and a

number ε > 0. In each round t, it recomputes the upper/lower confidence bounds,

as defined in (8.8), and solves the following linear program:

maximize µ+
t · x

subject to C−t (j) · x ≤ B(1−ε)
T

, j ∈ [d]

x ∈ P

(LPALG)

This linear program defines a linear relaxation of the original problem which is

“optimistic” in the sense that it uses upper confidence bounds for rewards and lower
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confidence bounds for consumption. The linear relaxation is also “conservative” in

the sense that it rescales the budget by 1− ε. Essentially, this is to ensure that the

algorithm does not run out of budget with high probability. Parameter ε will be

fixed throughout. For ease of notation, we will denote Bε := (1 − ε)B henceforth.

The LP solution x can be seen as a probability vector over the atoms. Finally,

the algorithm uses the RRS to convert the LP solution into a feasible action. The

pseudocode is given as Algorithm 8.

Algorithm 8: SemiBwK-RRS

input: an RRS for action set F , induced polytope P (as a set of linear

constraints), ε > 0.

1 for t = 1, 2 , . . . , T do

1. Recompute Confidence Bounds as in (8.8)

2. Obtain fractional solution xt ∈ [0, 1]n by solving the linear program

LPALG.

3. Obtain a feasible action St ∈ F by invoking the RRS on vector xt.

4. Semi-bandit Feedback: observe the rewards/consumption for all atoms

a ∈ St.

If action set F is described by a matroid constraint, we can use the negatively

correlated RRS from Chekuri et al. [59]. In particular, we obtain a complete al-

gorithm for several combinatorial constraints commonly used in the literature on

semi-bandits, such as partition matroid constraints, spanning trees.
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Theorem 13. Consider the SemiBwK problem with a linearizable action set F that

admits a negatively correlated RRS. Then algorithm SemiBwK-RRS with this RRS

achieves expected regret bound at most

O(log(ndT ))
√
n
(

OPTDP /
√
B +

√
T + OPTDP

)
. (8.9)

Here T is the time horizon, n is the number of atoms, and B is the budget. We

require B > 3(αn+
√
αnT ), where α = Θ(log(ndT )) is the parameter in confidence

radius. Parameter ε in the algorithm is set to
√

αn
B

+ αn
B

+
√
αnT
B

.

Corollary 5. Consider the setting in Theorem 13 and assume that the action set

F is defined by a matroid on the set of atoms. Then, using the negatively correlated

RRS from Chekuri et al. [59], we obtain regret bound (8.9).

Running time of the algorithm. The algorithm does two computationally in-

tensive steps in each round: solves the linear program (LPALG) and runs the RRS.

For matroid constraints, the RRS from Chekuri et al. [59] has O(n2) running time.

Hence, in the general case the computational bottleneck is solving the LP, which

has n variables and O(2n) constraints. Matroids are known to admit a polynomial-

time seperation oracle (e.g., see Schrijver [168]). It follows that the entire set of

constraints in LPALG admits a polynomial-time separation oracle, and therefore we

can use the Ellipsoid algorithm to solve LPALG in polynomial time. For some classes

of matroid constraints the LP is much smaller: e.g., for cardinality constraints (just

d + 1 constraints) and for traversal matroids on bipartite graphs (just 2n + d con-

straints). Then near-linear-time algorithms can be used.
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Our algorithm works under any negatively correlated RRS. We can use this

flexibility to improve the per-round running time for some special cases. (Making

decisions extremely fast is often critical in practical applications of bandits (e.g., see

Agarwal et al. [6].) We obtain near-linear per-round running times for cardinality

constraints and partition matroid constraints. Indeed, LPALG can be solved in near-

linear time, as mentioned above, and we can use a negatively correlated RRS from

Gandhi et al. [92] which runs in linear time. These classes of matroid constraints

are important in our applications (see Section 8.7).

8.6 Proof of Main Theorem

8.6.1 Proof overview.

First, we argue that LPALG provides a good benchmark that we can use instead

of OPTDP. Specifically, at any given round, the optimal value for LPALG in each

round is at least 1
T

(1−ε) OPTDP with high probability. We prove this by constructing

a series of LPs, starting with a generic linear relaxation for BwK and ending with

LPALG, and showing that the optimal value does not decrease along the series.

Next we define an event that occur with high probability, henceforth called

clean event. This event concerns total rewards, and compares our algorithm against

LPALG:

|
∑

t∈[T ] rt −
∑

t∈[T ] µ
+
t · xt| ≤ O

(√
αn
∑

t∈[T ] rt +
√
αnT + αn

)
. (8.10)

We prove that it is indeed a high-probability event in three steps. First,

we relate the algorithm’s reward
∑

t rt to its expected reward
∑

t µ · St, where we
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interpret the chosen action St, a subset of atoms, as a binary vector over the atoms.

Then we relate
∑

t µ · St to
∑

t µ
+
t · St, replacing expected rewards with the upper

confidence bounds. Finally, we relate
∑

t µ
+
t · St to

∑
t µ

+
t · xt, replacing the output

of the RRS with the corresponding expectations. Putting it together, we relate

algorithm’s reward to
∑

t µ
+
t · xt, as needed. It is essential to bound the deviations

in the sharpest way possible; in particular, the naive Õ(
√
T ) bounds are not good

enough. To this end, we use several tools: the confidence radius from (8.6), the

negative correlation property of the RRS, and another concentration bound from

prior work.

A similar “clean event” (with a similar proof) concerns the total resource

consumption of the algorithm. We condition on both clean events, and perform the

rest of the analysis via a “deterministic” argument not involving probabilities. In

particular, we use the second “clean event” to guarantee that the algorithm never

runs out of resources.

We use negative correlation via a rather delicate argument. We extend the

concentration bound in Theorem 12 to a random process that evolves over time, and

only assumes that property (8.4) holds within each round conditional on the history.

For a given round, we start with a negative correlation property of St and construct

another family of random variables that conditionally satisfies (8.4). The extended

concentration bound is then applied to this family. The net result is a concentration

bound for
∑

t µ
+
t · St as if we had n× T independent random variables there.

The rest of the section contains the full proof.
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8.6.2 Linear programs

We argue that LPALG provides a good benchmark that we can use instead of

OPTDP. Fix round t and let OPTALG, t denote the optimal value for LPALG in this

round. Then:

Lemma 24. OPTALG, t ≥ 1
T

(1− ε) OPTDP with probability at least 1− δ.

We will prove this by constructing a series of LP’s, starting with a generic

linear relaxation for BwK and ending with LPALG. We show that along the series

the optimal value does not decrease with high probability.

The first LP, adapted from Badanidiyuru et al. [33], has one decision variable

for each action, and applies generically to any BwK problem.

maximize
∑

S∈F µ(S)x(S)

subject to
∑

S∈F C(S, j)x(S) ≤ B/T j = 1, ..., d

0 ≤
∑

S∈F x(S) ≤ 1.

(LPBwK)

Let OPTBwK(B) denote the optimal value of this LP with a given budget B.

Then:

Claim 3. OPTBwK(Bε) ≥ (1− ε) OPTBwK(B) ≥ 1
T

(1− ε) OPTDP.

Proof. The second inequality in Claim 3 follows from [Lemma 3.1 in 33]. We will

prove the first inequality as follows. Let x∗ denote an optimal solution to LPBwK(B).

Consider (1− ε)x∗; this is feasible to LPBwK(Bε), since for every S,

(1− ε)x∗(S) ≤ 1 and
∑

S⊆A:S∈S

C(S, j)(1− ε)x(S) ≤ Bε/T.

169



Hence, this is a feasible solution. Now, consider the objective function. Let y denote

an optimal solution to LPBwK(Bε). We have that

OPTBwK(Bε) =
∑

S⊆A:S∈S

µ(S)y∗(S) ≥
∑

S⊆A:S∈S

µ(S)(1− ε)x∗(S) = (1− ε) OPTBwK(B).

Now consider a simpler LP where the decision variables correspond to atoms.

As before, P denotes the polytope induced by action set F .

maximize µ · x

subject to C† · x 4 Bε/T x ∈ P x ∈ [0, 1]n.

(LPATOMS)

Here C = (C(a, j) : a ∈ A, j ∈ d) is the n× d matrix of expected consumption, and

C† denotes its transpose. The notation 4 means that the inequality ≤ holds for for

each coordinate.

Leting OPTatoms denote the optimal value for LPATOMS, we have:

Claim 4. With probability at least 1−δ we have, OPTALG, t ≥ OPTatoms ≥ OPTBwK(Bε).

Proof. We will first prove the second inequality.

Consider the optimal solution vector x to LPBwK(Bε). Define S∗ := {S :

x(S) 6= 0}.

We will now map this to a feasible solution to LPATOMS and show that the

objective value does not decrease. This will then complete the claim. Consider the

following solution y defined as follows.

y(a) =
∑

S∈S∗:a∈S

x(S).
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We will now show that y is a feasible solution to the polytope P . From the defi-

nition of y, we can write it as y =
∑
S∈S∗

x(S) × I[S]. Here, I[S] is a binary vector,

such that it has 1 at position a if and only if atom a is present in set S. Hence, y

is a point in the polytope since it can be written as convex combination of its vertices.

Now, we will show that, y also satisfies the resource consumption constraint.

C(j) · y =
∑
a∈A

C(a, j)
∑

S∈S∗:a∈S

x(S) =
∑
S∈S∗

∑
a∈S

C(a, j)x(S) =
∑
S∈S∗

C(S, j)x(S) ≤ Bε/T.

The last inequality is because in the optimal solution, the x value correspond-

ing to subset S∗ is 1 while rest all are 0. We will now show that y produces an

objective value at least as large as x.

OPTatoms = µ · y∗ ≥ µ · y =
n∑
a=1

µ(a)
∑

S∈S∗:a∈S

x(S)

=
∑
S∈S∗

∑
a∈S

µ(a)x(S) =
∑
S∈S∗

µ(S)x(S)

= OPTsubsets(Bε).

Now we will prove the first inequality. We will assume the “clean event” that

µ+
t ≥ µ and C−t ≤ Ct for all t. Hence, the inequality holds with probability at least

1− δ.

Consider a time t. Given an optimal solution x∗ to LPATOMS we will show that

this is feasible to LPALG,t. Note that, x∗ satisfies the constraint set x ∈ P since that

is same for both LPALG,t and LPATOMS. Now consider the constraint C−t (j) ·x ≤ Bε
T

.

Note that C−t (a, j) ≤ C(a, j). Hence, we have that C−t (j) ·x∗ ≤ C(j) ·x∗ ≤ Bε
T

. The
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last inequality is because x∗ is a feasible solution to LPATOMS.

Now consider the objective function. Let y∗ denote the optimal solution to

LPALG,t.

OPTALG, t = µ+
t · y∗ ≥ µ+

t · x∗ ≥ µ · y∗ = OPTatoms.

Hence, combining Claim 3 and Claim 4, we obtain Lemma 24.

8.6.3 Negative correlation and concentration bounds

Our analysis relies on several facts about negative correlation and concen-

tration bounds. First, we argue that property (8.2) in the definition of negative

correlation is preserved under a specific linear transformation:

Claim 5. Suppose (X1, X2 , . . . , Xm) is a family of negatively correlated random

variables with support [0, 1]. Fix numbers λ1, λ2 , . . . , λm ∈ [0, 1]. Consider two

families of random variables:

F+ =

(
1 + λi(Xi − E[Xi])

2
: i ∈ [m]

)
and F− =

(
1− λi(Xi − E[Xi])

2
: i ∈ [m]

)
.

Then both families satisfy property (8.2).

Proof. Let us focus on family F+; the proof for family F− is very similar.

Denote µi = E[Xi] and Yi := (1 + λi(Xi − µi))/2 and zi := (1− λiµi)/2 for all

i ∈ [m]. Note that Yi = λiXi/2 + zi and zi ≥ 0, Xi ≥ 0. Fix a subset S ⊆ [m]. We

172



have,

E

[∏
i∈S

Yi

]
= E

∑
T⊆S

∏
i∈T

(λiXi/2)
∏
j∈S\T

zj

 (8.11)

=
∑
T⊆S

E

[∏
i∈T

(λiXi/2)

] ∏
j∈S\T

zj

≤
∑
T⊆S

∏
i∈T

(λiµi/2)
∏
j∈S\T

zj (8.12)

=
∏
i∈S

((1− λiµi)/2 + λiµi/2) (8.13)

= (1
2
)|S| =

∏
i∈S

E[Yi]

Eq. (8.11) and (8.13) follow from Binomial Theorem. Eq. (8.12) is because

Eq. (8.2) invariant under non-negative scaling, Xi neg. correlated

Second, we extend Theorem 12 to a random process that evolves over time,

and only assumes that property (8.4) holds within each round conditional on the

history.

Theorem 14. Let ZT = {ζt,a : a ∈ A, t ∈ [T ]} be a family of random variables

taking values in [0, 1]. Assume random variables {ζt,a : a ∈ A} satisfy property

(8.2) given Zt−1 and have expectation 1
2

given Zt−1, for each round t. Let Z =

1
nT

∑
a∈A,t∈[T ] ζt,a be the average. Then for some absolute constant c,

Pr[Z ≥ 1
2

+ η] ≤ c · e−2mη2

(∀η > 0). (8.14)

Proof. We prove that family Zt satisfies property (8.4), and then invoke Theorem 12.

Let us restate property (8.4) for the sake of completeness:

E

 ∏
(t,a)∈S

ζt,a

 ≤ 2−|S| for any subset S ⊆ ZT . (8.15)
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Fix subset S ⊂ ZT . Partition S into subsets St = {ζt,a ∈ ZT ∩ S}, for each round t.

Fix round τ and denote

Gτ =
∏
t∈[τ ]

Ht, where Ht =
∏
a∈St

ζt,a.

We will now prove the following statement by induction on τ :

E[Gτ ] ≤ 2−kτ , where kτ =
∑
t∈[τ ]

|St|. (8.16)

The base case is when τ = 1. Note that Gτ is just the product of elements in set ζ1

and they are negatively correlated from the premise. Therefore we are done. Now

for the inductive case of τ ≥ 2,

E[Hτ |Zτ−1] ≤
∏
a∈Sτ

E[ζτ,a|Zτ−1] From property (8.2) in the conditional space

(8.17)

≤ 2−|Sτ | From assumption in Lemma 14

(8.18)

Therefore, we have

E[Gτ ] = E[E[Gτ−1Hτ |Zτ−1]] Law of iterated expectation

= E[Gτ−1E[Hτ |Zτ−1]] Since Gτ−1 is a fixed value conditional on Zτ−1

≤ 2−|Sτ |E[Gτ−1] From Eq. (8.18)

≤ 2−kτ From inductive hypothesis

This completes the proof of Eq. (8.16). We obtain Eq. (8.15) for τ = T .

Third, we invoke Eq. (8.7) for rewards and resource consumptions:
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Lemma 25. With probability at least 1− e−Ω(α), we have the following:

|µ̂t(a)− µt(a)| ≤ 2 Rad(µ̂t(a), Nt(a) + 1)

∀j ∈ [d] |Ĉt(a, j)− Ct(a, j)| ≤ 2 Rad(Ĉt(a, j), Nt(a) + 1).

(8.19)

Fourth, we use a concentration bound from prior work which gets sharper

when the expected sum is very small, and does not rely on independent random

variables:

Theorem 15 (Babaioff et al. [28]). Let X1, X2, . . . , Xm denote a set of {0, 1} random

variables. For each t, let αt denote the multiplier determined by random variables

X1, X2, . . . , Xt−1. Let M =
∑m

t=1Mt where Mt = E[Xt|X1, X2, . . . , Xt−1]. Then for

any b ≥ 1, we have the following with probability at least 1−m−Ω(b):

|
m∑
t=1

αt(Xt −Mt)| ≤ b(
√
M logm+ logm)

8.6.4 Analysis of the “clean event”

Let us set up several events, henceforth called clean events, and prove that

they hold with high probability. Then the remainder of the analysis can proceed

conditional on the intersection of these events. The clean events are similar to the

ones in Agrawal and Devanur [11], but are somewhat “stronger”, essentially because

our algorithm has access to per-atom feedback and our analysis can use the negative

correlation property of the RRS.

In what follows, it is convenient to consider a version of SemiBwK in which the

algorithm does not stop, so that we can argue about what happens w.h.p. if our
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algorithm runs for the full T rounds. Then we show that our algorithm does indeed

run for the full T rounds w.h.p.

Recall that xt be the optimal fractional solution obtained by solving the LP

in round t. Let Yt ∈ {0, 1}n be the random binary vector obtained by invoking the

RRS (so that the chosen action St ∈ F corresponds to a particular realization of

Yt, interpreted as a subset). Let Gt := {Yt′ : ∀t′ ≤ t} denote the family of RRS

realizations up to round t.

8.6.4.1 “Clean event” for rewards

For brevity, for each round t let µt = (µt(a) : a ∈ A) be the vector of realized

rewards, and let rt := µt(St) = µt ·Yt be the algorithm’s reward at this round.

Lemma 26. Consider SemiBwK without stopping. Then with probability at least

1− nT e−Ω(α):

|
∑
t∈[T ]

rt −
∑
t∈[T ]

µ+
t · xt| ≤ O

√αn
∑
t∈[T ]

rt +
√
αnT + αn

 .

Proof. We prove the Lemma by proving the following three high-probability inequal-

ities.

With probability at least 1− nT e−Ω(α): the following holds:

|
∑
t∈[T ]

rt −
∑
t∈[T ]

µ ·Yt| ≤ 3nT Rad

 1

nT

∑
t∈[T ]

µ+
t · xt , nT

 (8.20)

|
∑
t∈[T ]

µ ·Yt − µ+
t ·Yt| ≤ 12

√√√√√αn

∑
t∈[T ]

µ+
t · xt

+ 12
√
αn+ 12αn (8.21)

|
∑
t∈[T ]

µ+
t ·Yt − µ+

t · xt| ≤
√
αnT . (8.22)
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We will use the properties of RRS to prove Eq. (8.22). Proof of Eq. (8.21) is

similar to Agrawal and Devanur [11], while proof of Eq. (8.20) follows immediately

from the setup of the model. Using the parts (8.20) and (8.22) we can now find an

appropriate upper bound on
√∑

t∈[T ] µ
+
t · xt and using this upper bound, we prove

Lemma 26.

Proof of Eq. (8.20). Recall that rt = µtYt. Note that, E[µtYt] = µYt when the

expectation is taken over just the independent samples of µ. By Theorem 15, with

probability 1− e−Ω(α) we have:

|
∑
t≤T

rt −
∑
t≤T

µ ·Yt| ≤ 3nT Rad

(
1

nT

∑
t≤T

µ ·Yt , nT

)

≤ 3nT Rad

(
1

nT

∑
t≤T

µ+
t ·Yt , nT

)

≤ 3nT Rad

(
1

nT

∑
t≤T

µ+
t · xt , nT

)
.

The last inequality is because Yt is a feasible solution to LPALG.

Proof of Eq. (8.21). For this part, the arguments similar to Agrawal and Devanur

[11] follow with some minor adaptations. For sake of completeness we describe the

full proof. Note that we have,

|
∑
t≤T

µ ·Yt − µ+
t ·Yt| ≤

n∑
a=1

|
∑
t≤T

µ(a)Yt(a)− µ+
t (a)Yt(a)|.

Now, using Lemma 25 in Appendix, we have that with probability 1−nTe−Ω(α)

|
∑
t≤T

µ(a)Yt(a)− µ+
t (a)Yt(a)| ≤ 12

∑
t≤T

Rad(µ(a), Nt(a) + 1).
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Hence, we have

n∑
a=1

|
∑
t≤T

µ(a)Yt(a)− µ+
t (a)Yt(a)| = 12

∑
a∈A

NT (a)+1∑
r=1

Rad(µ(a), r)

≤ 12
∑
a∈A

(NT (a) + 1) Rad(µ(a), NT (a) + 1)

≤ 12
√
αn (µ · (NT + 1)) + 12αn.

The last inequality is from the definition of Rad function and using the Cauchy-

Swartz inequality. Note that µNT =
∑

t≤T µ ·Yt. Also, since we have with proba-

bility 1− e−Ω(α), µ(a) ≤ µ+
t (a), we have,

12
√
αn (µ · (NT + 1)) + 12αn ≤ 12

√√√√αn

(∑
t≤T

µ+
t ·Yt

)
+ 12
√
αn+ 12αn.

Finally note that Yt is a feasible solution to the semi-bandit polytope P .

Hence, we have that

µ+
t ·Yt ≤ µ+

t · xt.

Hence,

12

√√√√αn

(∑
t≤T

µ+
t ·Yt

)
+ 12
√
αn+ 12αn ≤ 12

√√√√αn

(∑
t≤T

µ+
t · xt

)
+ 12
√
αn+ 12αn.

Proof of Eq. (8.22): Recall that for each round t, the UCB vector µ+
t is determined

by the random variables Gt−1 = {Yt′ : ∀t′ < t}. Further, conditional on a realization

of Gt−1, the random variables {Yt(a) : a ∈ A} are negatively correlated from the

property of RRS. Let ζ̃t(a) := µ+
t (a)Yt(a), a ∈ A. Note that we have E[ζ̃t(a)|Gt−1] =

µ+
t (a)xt(a). Define

ζt(a) :=
1 + µ+

t (a)Yt(a)− µ+
t (a)xt(a)

2
.
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From Claim 5, we have that {ζt(a) : a ∈ A} conditioned on Gt−1 satisfy (8.2).

Further, E[ζt(a)|Gt−1] = 1
2
. Therefore, the family {ζt(a) : t ∈ [T ], a ∈ A} satisfies

the assumptions in Theorem 14 and hence satisfies Eq. (8.14) for some absolute

constant c. Plugging back the ζ̃t(a)’s, we obtain an upper-tail concentration bound:

Pr

 1

nT
(
∑
t∈[T ]

∑
a∈A

ζ̃t(a)− µ+
t (a)xt(a)) ≥ η

 ≤ c · e−2nTη2

.

To obtain a corresponding concentration bound for the lower tail, we apply a

similar argument to

ζ ′t(a) =
1 + µ+

t (a)xt(a)− ζ̃t(a)

2
.

Once again from Claim 5, we have that {ζ ′t(a) : a ∈ A} conditioned on Gt−1 satisfy

(8.2). The family {ζ ′t(a) : t ∈ [T ], a ∈ A} satisfies the assumptions in Theorem 14

and hence satisfies Eq. (8.14). Plugging back the ζ̃t(a)’s, we obtain a lower-tail

concentration bound:

Pr

 1

nT
(
∑
t∈[T ]

∑
a∈A

µ+
t (a)xt(a)− ζ̃t(a)) ≥ η

 ≤ c · e−2nTη2

.

Combining these two we have,

Pr

 1

nT
|
∑
t∈[T ]

∑
a∈A

µ+
t (a)Yt(a)− µ+

t (a)xt(a)| ≥ η

 ≤ 2 c · e−2nTη2

. (8.23)

Hence setting η =
√

α
nT

, we obtain Eq. (8.22) with probability at least 1 −

e−Ω(α).

Combining Eq. (8.20), (8.21) and (8.22) Let us denote H :=
√∑

t∈[T ] µ
+
t · xt.

Adding the three equations we get

|
∑
t∈[T ]

rt −H2| ≤
√
αH + α +

√
αnH +O(αn) +

√
αnT (8.24)
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Rearranging and solving for H, we have

H ≤
√∑

t∈[T ]

rt +O(
√
αn) + (αnT )1/4

Plugging this back into Eq. (8.24), we get Lemma 26.

8.6.4.2 “Clean event” for resource consumption

We define a similar “clean event” for consumption of each resource j. By a

slight abuse of notation, for each round t let Ct(j) = (Ct(a, j) : a ∈ A) be the vector

of realized consumption of resource j. Let χt(j) denote algorithm’s consumption for

resource j at round t (i.e., χt(j) = Ct(j) ·Yt).

Lemma 27. Consider SemiBwK without stopping. Then with probability at least

1− nT e−Ω(α):

∀j ∈ [d] |
∑
t∈[T ]

χt(j)−
∑
t∈[T ]

C−t (j) · xt| ≤
√
αnBε + αn+

√
αnT .

Proof. The proof is similar to Lemma 26. We will split the proof into following three

equations. Fix an arbitrary resource j ∈ [d]. With probability at least 1−nTe−Ω(α)

the following holds:

|
∑
t≤T

χt(j)−
∑
t≤T

C(j) ·Yt| ≤ 3nT Rad

(
1

nT

∑
t≤T

C(j) ·Yt , nT

)
. (8.25)

|
∑
t≤T

C(j) ·Yt −C−t (j) ·Yt| ≤ 12

√√√√αn

(∑
t≤T

C(j) ·Yt

)
+ 12
√
αn+ 12αn. (8.26)
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|
∑
t≤T

C−t (j) ·Yt −C−t (j) · xt| ≤
√
αnT . (8.27)

Using the parts (8.25), (8.26) and (8.27) we can find an upper bound on√∑
t≤T Ct(j) ·Yt. Hence, combining equations (8.25), (8.26) and (8.27) with this

bound and taking an Union Bound over all the resources, we get Lemma 27.

Proof of Eq. (8.25). We have that {Ct(a, j) : a ∈ A} is a set of independent random

variables over a probability spacee CΩ. Note that, ECΩ
Ct(a, j)Yt(a) = C(a, j)Yt(a).

Hence, we can invoke Theorem 15 on independent random variables to get with

probability 1− nTe−Ω(α)

|
∑
t≤T

χt(j)−
∑
t≤T

C(j) ·Yt| ≤ 3nT Rad

(
1

nT

∑
t≤T

C(j) ·Yt , nT

)
.

Proof of Eq. (8.26). This is very similar to proof of (8.21) and we will skip the

repetitive parts. Hence, we have with probability 1− nTe−Ω(α)

|
∑
t≤T

C(j) ·Yt −C−t (j) ·Yt| ≤ 12
√
αn(C(j) · (NT + 1)) + 12αn

≤ 12

√√√√αn

(∑
t≤T

C(j) ·Yt

)
+ 12
√
αn+ 12αn.

Proof of Eq. (8.27). Recall that for each round t and each resource j, the LCB

vector C−t (j) is determined by the random variables Gt−1 = {Yt′ : ∀t′ < t}. Similar

to the proof of Eq. (8.22), random variables {Yt(a) : a ∈ A} obtained from the RRS

are negatively correlated given Gt−1. As before define ζ̃t(a) = C−t (a)Yt(a), a ∈ A.

We have that E[ζt(a) | Gt−1] = C−t (a)xt(a).

181



By Claim 5, random variables

ζt(a) =
1 + ζ̃t(a)− C−t (a)xt(a)

2
, a ∈ A

satisfy (8.2), given Gt−1. We conclude that family {ζt(a) : t ∈ [T ], a ∈ A} satisfies

the assumptions in Theorem 14, and therefore satisfies Eq. (8.14) for some absolute

constant c. Therefore, we obtain an upper-tail concentration bound for ζ̃t(a)’s:

Pr

 1

nT
(
∑
t∈[T ]

∑
a∈A

ζ̃t(a)− C−t (a)xt(a)) ≥ η

 ≤ c · e−2nTη2

.

To obtain a corresponding concentration bound for the lower tail, we apply a

similar argument to

ζ ′t(a) =
1 + C−t (a)xt(a)− ζ̃t(a)

2
.

Once again, invoking Claim 5 we have that {ζ ′t(a) : a ∈ A} conditioned on Gt−1

satisfy (8.2). Thus, family {ζt(a) : t ∈ [T ], a ∈ A} satisfies the assumptions in

Theorem 14, and therefore satisfies Eq. (8.14). We obtain:

Pr

 1

nT
(
∑
t∈[T ]

∑
a∈A

C−t (a)xt(a)− ζ̃t(a)) ≥ η

 ≤ c · e−2nTη2

.

Combing the two tails we have,

Pr

 1

nT
|
∑
t∈[T ]

∑
a∈A

C−t (a)Yt(a)− C−t (a)xt(a)| ≥ η

 ≤ 2 c · e−2nTη2

. (8.28)

Once again, setting η =
√

α
nT

, we obtain Eq. (8.27) with probability at least

1− e−Ω(α).

Proof of Lemma 27. Denote G =
√∑

t≤T C(j) ·Yt. From Equation (8.25), (8.26)

and (8.27), we have that G2−2Ω(
√
αn)G ≤

∑
t≤T C−t (j) ·xt+O(αn)+

√
αnT . Note

that
∑

t≤T C−t (j) ·xt ≤ Bε. Hence, G2−2Ω(
√
αn)G ≤ Bε +O(αn) +

√
αnT . Hence,
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re-arranging this gives us G ≤
√
Bε + O(

√
αn) + (αnT )1/4. Plugging this back in

Equations (8.25), (8.26) and (8.27), we get Lemma 27.

8.6.5 Putting it all together

Similar to Agrawal and Devanur [11], we will handle the hard constraint on

budget, by choosing an appropriate value of ε. We then combine the above Lemma

on ”rewards” clean event to compare the reward of the algorithm with that of the

optimal value of LP to obtain the regret bound in Theorem 13. Additionally, we

use the Lemma on ”consumption” clean event to argue that the algorithm doesn’t

exhaust the resource budget before round T . Formally, consider the following.

Recall that from Lemma 24, we have OPTALG, ≥ 1
T

(1−ε) OPTDP. Let us define

the performance of the algorithm as ALG =
∑

t≤T rt. From Lemma 26, that with

probability at least 1− ndT e−Ω(α)

ALG ≥ (1− ε) OPTDP−O(
√
αnALG)−O(αn)−

√
αnT

≥ (1− ε) OPTDP−O(
√
αnOPTDP)−O(αn)−

√
αnT (since ALG ≤ OPTDP).

Choosing ε =
√

αn
B

+ αn
B

+
√
αnT
B

and using the assumption that B > 3(αn +

√
αnT ), we derive Eq. (8.9). For any given δ, we set α = Ω(log(ndT

δ
)) to obtain a

success probability of at least 1− δ.

Now we will argue that the algorithm does not exhaust the resource budget

before round T with probability at least 1−ndT e−Ω(α). Note that for every resource

183



j ∈ [d], ∑
t≤T

C−t (j) · xt ≤ (1− ε)B.

Hence, combining this with Lemma 27, we have
∑

t≤T Ct(j) Yt ≤ (1− ε)B + εB ≤ B.

8.7 Applications and special cases

Let us discuss some notable examples of SemiBwK (which generalize some of

the numerous applications listed in Badanidiyuru et al. [33]). Our results for these

examples improve exponentially over a naive application of the BwK framework.

Compared to what can be derived from Agrawal and Devanur [11, 12], our results

feature a substantially better dependence on parameters, a much better per-round

running time, and apply to a wider range of parameters. However, we leave open

the possibility that the regret bounds can be improved for some special cases.

8.7.1 Dynamic pricing.

The dynamic pricing application is as follows. The algorithm has d products

on sale with limited supply: for simplicity, B units of each. Following Besbes and

Zeevi [39], we allow supply constraints across products, e.g., a “gadget” that goes

into multiple products. In each round t, an agent arrives (who can buy any subset

of the products), the algorithm chooses a vector of prices pt ∈ [0, 1]d to offer the

agent, and the agent chooses what to buy at these prices. For simplicity, the agent

is interested in buying (or is only allowed to buy) at most one item of each product.

The agent has a valuation vector over products, so that the agent buys a given
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product if and only if her valuation for this product is at least as high as the offered

price. The entire valuation vector is drawn as an independent sample from a fixed

and unknown distribution (but valuations may be correlated across products). The

algorithm maximizes the total revenue from sales.

To side-step discretization issues, we assume that prices are restricted to a

known finite subset S ⊂ [0, 1]. Achieving general regret bounds without such re-

striction appears beyond reach of the current techniques for BwK.10

To model it as a SemiBwK problem, the set of atoms is all price-product pairs.

The combinatorial constraint is that at most one price is chosen for each product.

(If an action does not specify a price for some product, the default price is used.)

This is a “partition matroid” constraint. Rewards correspond to revenue from sales,

and resources correspond to inventory constraints.

We obtain regret Õ(d
√
dB|S| +

√
T |S|) using Corollary 5, whenever B >

Ω̃(n +
√
nT ). This is because OPTDP ≤ dB, since that is the maximum number of

products available, and the number of atoms is n = d|S|.

For comparison, results of Agrawal and Devanur [11, 12] apply only when

B >
√
nT 3/4, and yield regret bound of Õ(d3|S|2

√
T ).11 Thus, our regret bounds

feature a better dependence on the number of allowed prices |S| (which can be

10Prior work on dynamic pricing with limited supply (e.g., Babaioff et al. [28], Badanidiyuru

et al. [33], Besbes and Zeevi [38]) achieves regret bounds without restricting itself to a particular

finite set of prices, but only for a simple special case of (essentially) a single product.
11We obtain this by plugging in OPTDP ≤ dB and n = d|S| into their regret bound. For dynamic

pricing the total per-resource consumption is bounded by 1, so we can apply their results without

rescaling the consumption.
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very large) and the number of products d. Further, our regret bounds hold in a

meaningful way for the much larger range of values for budget B.

For a naive application of the BwK framework, arms correspond to every

possible realization of prices for the d products. Thus, we have |S|d arms, with a

corresponding exponential blow-up in regret.

8.7.2 Dynamic assortment.

The dynamic assortment problem is similar to dynamic pricing in that the

algorithm is selling d products to an agent, with a limited inventory B of each prod-

uct, and is interested in maximizing the total revenue from sales. As before, agents

can have arbitrary valuation vectors, drawn from a fixed but unknown distribution.

However, the algorithm chooses which products to offer, whereas all prices are fixed

externally. There is a large number of products to choose from, and any subset of

k � d of them can be offered in any given round.

To model this as SemiBwK, atoms correspond to products, and actions corre-

spond to subsets of at most k atoms. The combinatorial constraint forms a partition

matroid. Rewards correspond to sales, and resources correspond to products, as in

dynamic pricing. Since OPTDP ≤ min(dB, kT ), Corollary 5 yields regret Õ(k
√
dT )

when B > Ω(T ), and regret Õ(d
√
dB +

√
dT ) in general.

In a naive application of BwK, arms are subsets of k products. Hence, we have

O(dk) arms. The other parameters of the problem remain the same. This leads to

regret bound Õ(d
√
Bdk), with an exponential dependence on k.
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8.7.3 Repeated auctions.

Consider a repeated auction with adjustable parameters, e.g., repeated second-

price auction with reserve price that can be adjusted from one round to another.

While prior work (Badanidiyuru et al. [33], Cesa-Bianchi et al. [55]) concerned run-

ning one repeated auction, we generalize this scenario to multiple repeated auctions

with shared inventory (e.g., the same inventory may be sold via multiple channels

to different audiences).

More formally, the auctioneer is running r simultaneous repeated auctions

to sell a shared inventory of d products, with limited supply B of each product

(e.g., different auctions can cater to different audiences). Each auction has a pa-

rameter which the algorithm can adjust over time. We assume that this parameter

comes from a finite domain S ⊂ [0, 1]. For simplicity, assume the auctions are syn-

chronized with one another. As in prior work, we assume that in every round of

each auction a fresh set of participants arrives, sampled independently from a fixed

joint distribution, and only a minimal feedback is observed: the products sold and

the combined revenue.

Following prior work (Badanidiyuru et al. [33], Cesa-Bianchi et al. [55]), we

only assume minimal feedback: for each auction, what were the products sold and

what was the combined revenue from this auction. In particular, we do not as-

sume that the algorithm has access to participants’ bids. Not using participants’

bids is desirable for privacy considerations, and in order to reduce the participants’

incentives to game the learning algorithm.
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To model this problem as SemiBwK, atoms are all auction-parameter pairs.

The combinatorial constraint is that an action must specify at most one parameter

value for each auction. This corresponds to partition matroid constraint. There

is a “default parameter” for each auction, in case an action does not specify the

parameter. We have a resource for each product being auctioned. For simplicity,

each product has supply of B. Note that OPTDP ≤ dB and number of atoms is

n = r|S|. Hence, our main result yields regret Õ(d
√
r|S|B +

√
r|S|T ).

A naive application of the BwK framework would have arms that correspond

to all possible combinations of parameters, for the total of O(|S|r) arms. Again, we

have an exponential blow-up in regret. Alternatively, one may try running r separate

instances of BwK, one for each auction, but that may result result in budgets being

violated since the items are shared across the auctions and it is unclear a priori how

much of each item will be sold in each auction.

One can also consider a “flipped” version of the previous example, where the

algorithm is a bidder rather than the auction maker. The bidder participates in r

repeated auctions, e.g., ad auctions for different keywords. We assume a stationary

environment: bidder’s utility from a given bid in a given round of a given auction

is an independent sample from a fixed but unknown distribution. The only limited

resource here is the bidder’s budget B. Bids are constrained to lie in a finite subset

S.

To model this as SemiBwK, atoms correspond to the auction-bid pairs. The

combinatorial constraint is that each action must specify at most one bid for each

auction. (There is a “default bid” for each auction in case an action does not specify
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Figure 8.1: Dynamic Assortment (left) and Dynamic Pricing (right) experiments for

n = 26.

the bid for this auction.) There is exactly one resource, which is money and the

total budget is B. Note that the number of atoms is n = r|S|. Hence, our main

result yields regret Õ(OPTDP

√
r|S|/B +

√
r|S|T ).

A naive application of BwK would have arms that correspond to all possible

combinations of bids, for the total of O(|S|r) arms; so we have an exponential blow-

up in regret.

8.8 Numerical Simulations

We ran some experiments on simulated datasets in order to compare our al-

gorithm, SemiBwK-RRS, with some prior work that can be used to solve SemiBwK:

• the primal-dual algorithm for BwK from Badanidiyuru et al. [33], denoted

pdBwK.

• an algorithm for combinatorial semi-bandits with a matroid constraint: “Op-

timistic Matroid Maximization” from Kveton et al. [124], denoted OMM.
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Figure 8.2: Experimental Results for Uniform matroid (left plots) and Partition

matroid (right plots) on independent (upper) and correlated (lower) instances for

n = 26.

• the linear-contextual BwK algorithm from Agrawal and Devanur [12], dis-

cussed in the Introduction, denoted linCBwK.

To speed up the computation in linCBwK, we used a heuristic modification

suggested by the authors in a private communication. This modification did not

substantially affect average rewards in our preliminary experiments. We also made

a heuristic improvement to our algorithm, setting ε = 0 and α = 5. We use the

same value of α for the pdBwK algorithm as well.

Problem instances. We did not attempt to comprehensively cover the huge va-

riety of problem instances in SemiBwK. Instead, we focus on two representative

applications from Section 8.7.
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Figure 8.3: Experimental Results for Uniform matroid (left plots) and partition

matroid (right plots) on independent (upper) and correlated (lower) instances for

n = 6.

The first experiment is on dynamic assortment. We have n products, and for

each product i there is an atom i and a resource i. The (fixed) price for each product

is generated as an independent sample from U[0,1], a uniform distribution on [0, 1].

At each round, we sample the buyers’s valuation from U[0,1], independently for each

product. If the valuation for a given product is greater than the price, one item of

this product is sold (and then the reward for atom i is the price, and consumption

of resource i is 1). Else, we set reward for atom i and consumption for resource i to

be 0.

The second experiment is on dynamic pricing with two products. We have n/2

allowed prices, uniformly spaced in the [0, 1] interval. Recall that atoms correspond
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to price-product pairs, for the total of n atoms. In each round t, the valuation

vt,i for each product i is chosen independently from a normal distribution N (v0
i , 1)

truncated on [0, 1]. The mean valuation v0
i is drawn (once for all rounds) from U[0,1].

If vt,i is greater than the offered price p, one item of this product is sold. Then

reward for the corresponding atom (p, i) is the price p, and consumption of product

i is 1. If there is no sale for this product, the reward and consumption for each atom

(p, i) is set to 0.

The third experiment is a modification of the dynamic assortment example, in

which we ensure that even non-action (e.g., no sale) exhausts resources other than

time. As in dynamic assortment, we have n products, and for each product i there

is an atom i and a resource i. The (fixed) price for each product is generated as

an independent sample from U[0,1], a uniform distribution on [0, 1]. At each round,

we sample the buyers’s valuation from U[0,1], independently for each product. If the

valuation for a given product is greater than the price, one item of this product is

sold (and then the reward for atom i is the price, and consumption of resource i

is 1). Else, we do something different from dynamic assortment: we set reward for

atom i and consumption for resource i to be the buyer’s valuation.

The fourth experiment is a similar modification of the dynamic pricing exam-

ple. We have n/2 allowed prices, uniformly spaced in the [0, 1] interval. Recall that

atoms correspond to price-product pairs, for the total of n atoms. In each round t,

the valuation vt,i for each product i is chosen independently from a normal distri-

bution N (v0
i , 1) truncated on [0, 1]. The mean valuation v0

i is drawn (once for all

rounds) from U[0,1]. If the valuation for a given product i is greater than the offered
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price p, one item of this product is sold (and then reward for the corresponding

atom (p, i) is the price, and consumption of product i is 1). If there is no sale for

this product, we do something different from dynamic pricing. For each atom (p, i),

if p < vt,i then the reward for atom (p, i) is drawn independently from U[0,1] and

resource consumption is 1; else, reward is 0 and consumption is .3. While dynamic

assortment is modeled with a uniform matroid, and dynamic pricing is modeled with

a partition matroid, we tried both matroids on each family.

Experimental setup and results. We choose various values of n, B and T

and run our algorithms on the above two datasets assuming both a uniform ma-

troid constraint and a partition matroid constraint. We choose n ∈ {6, 26}, T ∈

{1000, 2000, 3000, 4000, 5000, 6000} and B = T/2. The maximum number of atoms

in any action is set to K = 2. For a given algorithm, dataset and configuration of

n and T , we simulate each algorithm for 20 independent runs and take the average.

We calculate the total reward obtained by the algorithm at the end of T time-steps.

Figure 8.1 shows results for the first two experiments. Figures 8.2 and 8.3

show the results on the third and fourth experiments. Our algorithm achieves the

best regret among the competitors. As a benchmark, we included the performance

of the fractional allocation in LPOPTDP
, denoted OPTDP.

Additional experiment. linCBwK and pdBwK have running times proportional to

the number of actions. We ran an additional experiment which compared per-step

running times. We first calculate the average running time for every 10 steps and

take the median of 50 such runs. For both Uniform matroid and Partition matroid,
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Figure 8.4: Variation of per-step running times as n increases for the various algo-

rithms.

we run the faster RRS due to Gandhi et al. [92]. See Figure 8.4 for results.

Details of heuristic implementation of linCBwK. We now briefly describe the

heuristic we use to simulate the linCBwK algorithm. Note that even though the per-

time-step running time of linCBwK is reasonable, it takes a significant time when we

want to perform simulations for many time-steps. The time-consuming step in the

linCBwK algorithm is the solution to a convex program for computing the optimistic

estimates (namely µ̃t and W̃t). Hence, the heuristic gives a faster way to obtain

this estimate. We sample multiple times from a multi-variate Gaussian with mean

µ̂ and covariance Mt (to obtain estimate µ̃t) and with mean ŵtj and covariance Mt

(to obtain estimate w̃tj for each resource j). We use these samples to compute the

objective to choose the action at time-step t. For each sample, we compute the best

action based on the objective in linCBwK. We finally choose the action that occurs

majority number of times in these samples. The number of samples we choose is set

to 30.

Language Details of algorithms. All algorithms except linCBwK were imple-
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mented in Python. The linCBwK algorithm was implemented in MATLAB. This

difference is crucial when we compare running times since language construct can

speed-up or slow down algorithms in practice. However, it is known that 12 for

matrix operations commonly encountered in engineering and statistics, MATLAB

implementations runs several orders of magnitude faster than the corresponding

python implementation. Since linCBwK is the slowest of the four algorithms, our

comparison of running times across languages is justified.

8.9 Conclusion

In this chapter we consider an extension of the BwK problem, namely, stochas-

tic combinatorial semi-bandits with knapsacks under matroid constraints and gave a

specialized algorithm with optimal bounds. Moreover, we also show applications of

SemiBwK and run numerical experiments on simulated data to support our theoreti-

cal results. The results in this chapter work for a specialized (yet capture all known

applications) action set and obtain stronger bounds (essentially optimal) than those

in Section 7.9 in Chapter 7.

12https://www.mathworks.com/products/matlab/matlab-vs-python.html
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Chapter 9: Future Directions

In this chapter we conclude with future research directions that stem out of

the problems considered in this thesis. We consider both future directions in the

models of SDM considered in this thesis as well as other problems beyond SDM

that are motivated by problems in this thesis. We also believe that the work in this

thesis can be applied to a wider range of applications and exploring them is a future

direction.

Online Matching

The most direct open problem in online matching is to close the gap between

the upper and lower-bound for the Online Weighted Matching problem in the known

distribution model considered in Chapter 3. We provide an algorithm with a com-

petitive ratio of 0.7 while the known lower-bound is 0.823 given by Manshadi et al.

[137] which also applies to unweighted graphs. Thus, we want to close this gap by

either bringing the upper-bound towards the lower-bound or vice versa (or possibly

both).

The other direction is to consider stochastic arrival models that relax the no-

tion of independence across time-steps which is often too simplifying. In many prac-

tical scenarios, this model of stochastic arrival doesn’t exactly capture the reality of
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the underlying data. The input often resembles a stochastic process with some pre-

dictable correlations across time-steps (e.g., rider request pattern depends on local

events). In the context of optimization in matching markets and specifically, online

matching, results based on correlated data arrival have not been studied. Thus,

it is interesting to formulate and study online matching and its variants under no-

tions of correlation that are both theoretically challenging and practically relevant.

Candidate models include notions of limited dependence such as Markov chains.

Such models are especially useful in applications where the input is received as a

result of human decisions. The other direction is to consider corrupted inputs, that

are frequently encountered in many applications. Abstractly, this can be modeled

as input sequences that are close to an i.i.d. sequence with adversarial perturba-

tions. In other words, we want algorithms whose performance smoothly interpolate

between the stochastic and the adversarial models. Prior work (Esfandiari et al.

[81]) has proposed one interesting model along these lines for a particular variant

of the unweighted online matching problem. However, the question of interpolation

is not yet fully understood and thus, it will be interesting to study this for the vast

landscape of online matching problems.

From a theoretical stand-point one interesting open question is to obtain a

competitive ratio bound that holds with high-probability (i.e., bound the variance

of the algorithm’s performance). For the online weighted matching problem the

performance guarantees of both the algorithms proposed in Chapter 3 and the one

proposed in Haeupler et al. [102] only hold in expectation. Thus, it will be interesting

to understand if similar ratios can be proved that hold with high-probability. For
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the unweighted version of the problem, such high-probability bounds are known

(e.g., Feldman et al. [83]).

Bandits with Knapsacks

The work on adversarial BwK (Chapter 7) directly leads to a few open ques-

tions and directions. In particular, it would be illuminating to have a single algo-

rithm that has good performance simultaneously in the stochastic and the adversar-

ial setting without knowing a-priori, the environment the algorithm is operating in

(so called “best-of-both-worlds algorithm”). Our work almost achieves this, where

we develop a common framework to solve both the settings but technical conditions

prevent us from using it without knowing the environment. A closely related but

distinct question is to obtain instance-specific bounds for the stochastic version of

the problem. In particular, the goal is to derive bounds that improve on the easy

instances of the problem while still achieving the worst-case bounds in the hard

regimes. Another interesting direction is to consider the Stochastic BwK problem

with limited dependence, where the environment is stochastic (but not independent)

while the rewards/consumptions across times have weak correlation. Limited de-

pendence and multi-armed bandits have been previously studied and is supported

by numerous motivating examples. However, in many of these applications we also

have limited inventory and thus, the ideal approach would be to use variants of BwK

in such applications.

A broader direction stemming out of our work is to investigate the interplay

of learning and game-theory in the context of time-varying zero-sum games. In a
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time-varying zero-sum game, the players play different zero-sum games repeatedly

and the goal for each player is to maximize their total payoff. When both players

play optimally, the strategy pair is said to be in equilibrium. Classical results in

online learning show that MAB algorithms played against each other, approximately

converge to the equilibrium. However, the results are limited to the settings when the

game remains the same across time or the payoff functions across time are sampled

independently and identically from the same distribution. Thus, it is interesting

to understand the behavior of MAB algorithms when no assumptions about the

repeated zero-sum games are made. A very recent work by Cardoso et al. [53] make

some progress in this direction.

Beyond SDM and Related Problems

The central thesis in our work was to explore SDM problems with information

constraints. However, there are many other problems that are closely related that

have similar constraints. Consider the BwK problem. The key challenge for the

algorithm was to perform counterfactual inference (i.e., answering what if for arms

that were not chosen) in the face of limited samples. In sequential experiment design

literature, there are multiple approaches to studying this challenge, with bandit-

based approach being one of them. An alternate method to do this is to pose this as

a problem in causal inference and study the effects of limited samples on inference

algorithms. This question is not well understood; only a handful of prior works

(e.g., Ghoshal and Honorio [93], Sankararaman et al. [164, 165]) have considered

this question and it would be interesting to understand the limits of finite samples
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for counterfactual reasoning. More broadly, understanding the trade-off between

limited samples and performance of online algorithms with stochastic input is an

interesting research direction (i.e., the algorithm only has access to samples from a

distribution as opposed to the known distribution assumption).
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Part III

Appendix
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Appendix: Standard Tools

10.1 Concentration Inequalities

Lemma 28 (Azuma-Hoeffding inequality ([148])). Let Y1, Y2, . . . , YT be a martingale

difference sequence ( i.e., E[Yt | Y1, Y2 , . . . , Yt−1] = 0). Suppose |Yt| ≤ c for all

t ∈ {1, 2, . . . , T}. Let R0,δ(T ) :=
√

2Tc2 ln(1/δ). Then for every δ > 0,

Pr
[∑

t∈[T ] Yt > R0,δ(T )
]
≤ δ.

Lemma 29 (Chernoff-Hoeffding bounds ([148])). Let X1, X2, . . . , XT be a sequence

of independent random variables such that |Xt| ≤ c for all t ∈ {1, 2, . . . , T}. Let

Zt := E[Xt]. Then for every δ > 0,

Pr

[∣∣∣∑t∈[T ] Xt − Zt
∣∣∣ > 3

√(∑
t∈[T ] Zt

)
c2 ln(1/δ)

]
≤ δ.

10.2 Adversarial Online Learning

Let us revisit adversarial online learning, as per Figure 7.2. Denote the bench-

mark in Eq. (7.4) as

OPTAOL(T ) := maxa∈A
∑

t∈[T ] ft(a).

Recall that [bmin, bmax] is the payoff range, and denote σ = bmax − bmin.
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Lemma 30. Suppose an algorithm for adversarial online learning satisfies Eq. (7.4)

for some δ > 0. Then

Pr
[
∀τ ∈ [T ] OPTAOL(τ) −

∑
t∈[τ ] ft · pt ≤ σ ·

(
Rδ/T (T ) +

√
2T log(T/δ)

) ]
≥ 1− 2δ.

(10.1)

Proof. Let us use the stronger regret bound Eq. (7.5) implied by Eq. (7.4). Note

that

E[ft(at) | a1, a2 , . . . , at−1] = ft · pt.

Applying the Azuma-Hoeffding inequality for each τ ∈ [T ], and taking a union

bound, we have

Pr
[
∀τ ∈ [T ]

∑
t∈[τ ] ft(at)−

∑
t∈[τ ] ft · pt ≤ σ ·

√
2T log(T/δ)

]
≥ 1− δ. (10.2)

Taking a union bound over Eq. (10.2) and Eq. (7.5) and adding the equations we

get Eq. (10.1).

Remark 12. For Hedge algorithm, regret bound Eq. (10.1) is already proved in [88].

10.3 Lagrangians

10.3.1 Proof of Lemma 12

Assume one of the resources is the dummy resource, and one of the arms is

the null arm. Consider the linear program LPM,B,T , for some outcome matrix M.

Let L = LM,B,T denote the Lagrange function.

Lemma 31 (Lemma 12, restated). Suppose (X∗, λ∗) is a mixed Nash equilibrium

for the Lagrangian game. Then X∗ is an optimal solution for the linear program
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(7.8). Moreover, the minimax value of the Lagrangian game equals the LP value:

L(X∗, λ∗) = OPTLP.

In what follows we prove Lemma 31. Writing out the definition of the mixed

Nash equilibrium,

L(X∗, λ) ≥ L(X∗, λ∗) ≥ L(X, λ∗) ∀X ∈ ∆K , λ ∈ ∆d. (10.3)

For brevity, denote r(X∗) =
∑

a∈[K] X
∗(a) r(a) and ci(X

∗) =
∑

a∈[K] X
∗(a) ci(a).

We first state and prove the complementary slackness condition for the Nash

equilibrium.

Claim 6. For every resource i ∈ [d] we have,

(a) 1− T
B
ci(X

∗) ≥ 0,

(b) λ∗i > 0 =⇒ 1− T
B
ci(X

∗) = 0.

Proof. Part (a). For contradiction, consider resource i that minimizes the left-hand

side in (a), and assume that the said left-hand side is strictly negative. We have

two cases: either λ∗i < 1 or λ∗i = 1. When λ∗i < 1, consider another distribution

λ̃ ∈ ∆d such that λ̃i = 1 and λ̃i′ = 0 for every i′ 6= i. Note that we have, L(X∗, λ̃) <

L(X∗, λ∗). This contradicts the first inequality in Eq. (10.3).

Consider the second case, when λ∗i = 1. Then L(X∗, λ∗) = r(X∗)+1− T
B
ci(X

∗).

Consider any arm a ∈ [K] such that X∗(a) 6= 0. Let X̃ ∈ ∆K be another distribution

such that X̃(a) := 0 and X̃(null) := X∗(null) +X∗(a) and X̃(a′) = X∗(a′) for every

a′ 6∈ {a, null}. Note that X̃(null) ≤ 1. Since (X∗, λ∗) is a Nash equilibrium, we
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have that L(X̃, λ∗) ≤ L(X∗, λ∗). This implies that −X∗(a)r(a) +X∗(a) T
B
ci(a) ≤ 0.

Re-arranging we obtain, T
B
ci(a) ≤ r(a) ≤ 1. Thus, we have 1− T

B
ci(a) ≥ 0.

Since this holds for every a ∈ [K] with X∗(a) 6= 0, we obtain a contradiction:

1− T
B
ci(X

∗) =
∑

a∈[K] X
∗(a)

(
1− T

B
ci(a)

)
≥ 0.

Part (b). For contradiction, assume the statement is false for some resource i.

Then, by part (a), λ∗i > 0 and 1− T
B
ci(X

∗) > 0, and consequently L(X∗, λ∗) > r(X∗).

Now, consider distribution λ̃ which puts probability 1 on the dummy resource.

We then have L(X∗, λ̃) = r(X∗) < L(X∗, λ∗), contradicting the first inequality

in Eq. (10.3).

Let X̃ be some feasible solution for the linear program (7.8). Plugging the

feasibility constraints into the definition of the Lagrangian function, L(X̃, λ∗) ≥

r(X̃). Claim 6(a) implies that X∗ is a feasible solution to the linear program (7.8).

Claim 6(b) implies that L(X∗, λ∗) = r(X∗). Thus,

r(X∗) = L(X∗, λ∗) ≥ L(X̃, λ∗) ≥ r(X̃).

So, X∗ is an optimal solution to the LP. In particular, OPTLP = r(X∗) = L(X∗, λ∗).

10.3.2 Regret minimization in games

10.3.3 Proof of Lemma 11

Let W =
√

2T log(T/δ) denote the term from Lemma 30 in what follows.

We now prove Lemma 11, similar to the proof in [87] for the deterministic

game. Recall that we take averages up to some fixed round τ ∈ [T ]. We prove that
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the following two inequalities hold, each with probability at least 1− δ.

1

τ

∑
t∈[τ ]

pT
t,1 Gt pt,2 ≥ v∗ − σ ·

R1, δ/T (T ) + 2W

τ
. (10.4)

1

τ

∑
t∈[τ ]

pT
t,1 Gt pt,2 ≤ pT

1 G p2 + σ ·
R2, δ/T (T ) + 2W

τ
∀p2 ∈ ∆A2 . (10.5)

Eq. (7.7) in Lemma 11 follows by adding Eq. (10.4) and Eq. (10.5).

First we prove Eq. (10.4). Following the set of inequalities in Section 2.5 of

[87] we have,

1

τ

∑
t∈[τ ]

pT
t,1Gtpt,2 ≥whp

1

τ

∑
t∈[τ ]

p∗1
T Gt pt,2 − σ ·

R1, δ/T (T ) +W

τ
From Lemma 30

≥whp
1

τ

∑
t∈[τ ]

p∗1
T G pt,2 − σ ·

R1, δ/T (T ) + 2W

τ
From Lemma 28

= max
p1∈∆A1

1

τ

∑
t∈[τ ]

p1
T G pt,2 − σ ·

R1, δ/T (T ) + 2W

τ
From Definition of p∗1.

= max
p1∈∆A1

p1
T G p2 − σ ·

R1, δ/T (T ) + 2W

τ
From Definition of p2.

≥ min
p2∈∆A2

max
p1∈∆A1

pT
1 G p2 − σ ·

R1, δ/T (T ) + 2W

τ

Here ≤whp denotes statements that hold with probability at least 1− δ.

Now let us prove Eq. (10.5). Fix distribution p2 ∈ ∆A2 . Then:

1

τ

∑
t∈[τ ]

pT
t,1 Gt pt,2 ≤whp

1

τ

∑
t∈[τ ]

pt,1
T Gt p2 + σ ·

R2, δ/T (T ) +W

τ
From Lemma 30

≤whp
1

τ

∑
t∈[τ ]

pt,1
T G p2 + σ ·

R2, δ/T (T ) + 2W

τ
From Lemma 28

= p1
T G p2 + σ ·

R2, δ/T (T ) + 2W

τ
From Definition of p1.

Taking a union bound over all the four high-probability inequalities, we get the

lemma.
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