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ABSTRACT
Efficient allocation of tasks to workers is a central problem in crowd-
sourcing. In this paper, we consider a special setting inspired from
spatial crowdsourcing platforms where both workers and tasks arrive
dynamically. Additionally, we assume all tasks are heterogeneous
and each worker-task assignment brings a distinct reward. The natu-
ral challenge lies in how to incorporate the uncertainty in the arrivals
from both workers and tasks into our online allocation policy such
that the total expected rewards are maximized. To attack this chal-
lenge, we assume the arrival patterns of worker “types” and task
“types” are not erratic and can be predicted from historical data. To
be more specific, we consider a finite time horizon T and assume in
each time-step, a single worker and task are sampled (i.e., “arrive”)
from two respective distributions independently, and this sampling
process repeats identically and independently for the entire T online
time-steps.

Our model, called Online Task Assignment with Two-Sided Ar-
rival (OTA-TSA), is a significant generalization of the classical on-
line task assignment where the set of tasks is assumed to be available
offline. For the general version of OTA-TSA, we present an optimal
non-adaptive algorithm which achieves an online competitive ratio
of 0.295. For the special case of OTA-TSA where the reward is a
function of just the worker type, we present an improved algorithm
(which is adaptive) and achieves a competitive ratio of at least 0.345.
On the hardness side, along with showing that the ratio obtained
by our non-adaptive algorithm is the best possible among all non-
adaptive algorithms, we further show that no (adaptive) algorithm
can achieve a ratio better than 0.581 (unconditionally), even for the
special case of OTA-TSA with homogenous tasks (i.e., all rewards
are same). At the heart of our analysis lies a new technical tool
(which is a refined notion of the birth-death process), called the
two-stage birth-death process, which may be of independent inter-
est. Finally, we perform numerical experiments on two real-world
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datasets obtained from crowdsourcing platforms to complement our
theoretical results.
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1 INTRODUCTION
Assigning workers to tasks is a central challenge in various crowd-
sourcing platforms. For example, in mobile crowd-sensing [29, 30],
a central platform allocates mobile users to complex data collection
and analysis tasks; in joint crowdsourcing [5, 16], workers answer
small questions with varying difficulties; and in spatial crowdsourc-
ing [26, 27], workers and tasks are matched in the context of a metric
space.

More recently, a special class of the worker-task assignment ,
called the online task assignment (OTA), has attracted lots of at-
tention. The basic setting is as follows: the set of tasks are known
beforehand while the set of workers is revealed sequentially in an on-
line manner; once a worker arrives, they have to be instantaneously
and irrevocably assigned to a task. Each assignment gives a known
profit (uniform or non-uniform) and the goal is to design an allo-
cation policy such to maximize the (expected) total profit, while
satisfying various practical constraints such as the total budget for
payments for workers, deadlines of tasks, etc (e.g., Assadi et al. [3]).
There are three common arrival assumptions for the online workers:
adversarial order (AO, the arrival sequence is unknown and can be
arbitrarily fixed by an adversary), random arrival order (RAO, the
arrival sequence is sampled from the set of all permutations over the
workers) and known independent and identical distribution (KIID,
a worker is sampled, with replacement, from a known distribution
each time). Ho and Vaughan [14] considered OTA under RAO where
they assume the profit for each assignment has to be learnt. Assadi
et al. [3] studied a budgeted version of OTA under AO and RAO; in
the budgeted version we have a global total budget and each assign-
ment incurs a cost, which is the amount we need to pay the worker
(this is equal to the bid they submitted for the task after arrival).
The budgeted version of OTA and its generalizations have been
vastly studied in the context of truthful mechanism design, where
the goal is to elicit truthful bids from the online workers (e.g., see
[10, 11, 22–24, 31, 32]). In particular, Singer and Mittal [23], Singla
and Krause [24] considered the KIID setting while Zhao et al. [32]
and Subramanian et al. [25] considered the RAO setting.
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In OTA, the main limiting assumption is that tasks are static
(known in advance). This fails to capture various applications where
the tasks are not all available at once and come in an online manner
similar to the workers. This is a common scenario in spatial crowd-
sourcing platforms. Hassan and Curry [13] considered a practical
worker-task assignment under a converse setting to the OTA, where
the spatial tasks come dynamically while the workers are static. The
worker has to travel to the specific location of the task to finish
it. [27] studied a generalized setting where both workers and tasks
come online which was motivated from a spatial crowdsourcing
platform on university campus, where anyone on campus can both
post micro-tasks, (e.g., buying drinks or collecting a package), and
perform tasks as a worker. They assumed that the arrivals is sampled
from the distribution over all permutations of both workers and tasks
together and is unknown to the algorithm. They tested their algo-
rithms on two real-world crowdsourcing datasets, namely gMission
[7] and EverySender.

Inspired by the above work (Hassan and Curry [13], Tong et al.
[27]), we propose the online task assignment with two-sided arrival
(OTA-TSA) where both workers and tasks come online but under
the arrival setting of KIID. We first briefly review the setting in
the OTA under KIID — a known bipartite graph G = (U ,V ,E)
is given as input (this graph is also called the compatibility graph
throughout this paper), where U and V represent the respective set
of worker-types and task-types; we have a finite time horizon of
T in which vertices in U are revealed step-by-step in each time-
step (while all vertices in V are already given). In every time-step
a worker of a particular type is sampled from a known distribution
over U and the samples are independent across all the T rounds.
We generalize the KIID setting from one-sided arrival to two-sided
arrival in the following natural way — in each round (for a total ofT
rounds) a worker of typeu is sampled from a known distribution over
U , while simultaneously a task of type v is sampled from another
known distribution over V independently. We now motivate the key
assumptions in OTA-TSA.

Known independent and identical arrival distributions (KIID).
In many crowdsourcing platforms, one collects meta-data about the
tasks and workers. This data is used to predict both the performance
and the arrival times of various workers and tasks in future (e.g., [8],
[21]). Hence allowing the underlying compatibility graph G and
the arrival sequence of tasks and workers to be arranged by an
adversary seems strong. We can exploit the rich historical data to
predict both the compatibility graph and the arrival distributions of
workers and tasks. This motivates us to consider the KIID model,
which is assumed by many previous work (e.g., [23, 24]).

The number of types: workers versus tasks. The majority of pre-
vious work in the OTA assumes that the number of task-types is far
lesser than that of worker-types. This assumption is true in crowd-
sourcing platforms such as Amazon Mechanical Turk where indi-
viduals or organizations have a certain number of offline tasks and
try to “crowdsource” the workers from Internet. In many spatial
crowdsourcing platforms where both tasks and workers come online,
as studied in this paper, the opposite is true: the number of task-
types is far larger than that of worker-types. Hassan and Curry [13]
run experiments on a real-world dataset of a location-based social

network, called Gowalla, where the number of task-types is nearly
50 times that of worker-types. Moreover, in the two datasets con-
sidered by Tong et al. [27], namely gMission [7] and EverySender,
the task-types are more than worker-types. We use the same in our
experiments in Section 9.

Retention in the system: workers versus tasks. In the OTA-TSA
model, we assume that (a) once a task arrives, it has to be instan-
taneously and irrevocably assigned to one of the workers who has
arrived so far or reject the task; (b) once a worker arrives, they will
stay in the system until being assigned. The assumption (2) here dif-
fers significantly from OTA since the motivating application is vastly
different. OTA is primarily motivated by applications in crowdsourc-
ing platforms such as Amazon Mechanical Turk where the tasks are
offline while the number of available workers are plenty. In this con-
text, once a worker comes into the system they expect to be allocated
a task immediately; they have very little incentive to stay since they
need to compete with a large pool of other workers for a limited set
of tasks. However OTA-TSA is inspired from applications in spatial
crowdsourcing platforms where worker-types are outnumbered by
task-types. Any time a worker arrives but doesn’t get a task assigned,
they still have an incentive to stay since eventually they would be
assured of an assignment.

In OTA-TSA, we consider a similar objective as that of OTA—
every assignment e = (u,v ) fetches a non-uniform profit we and our
goal is to design an allocation policy such that the expected total
profit is maximized.

1.1 Our Contributions
Before detailing our contributions, we first review briefly some basic
terminologies used in online algorithms.

Adaptive versus non-adaptive algorithms. Suppose we have a fi-
nite time horizon T . An algorithm ALG is called non-adaptive if the
strategy for assigning a task v, when v comes for the kth time for
any k = 1, 2, . . . ,T is specified before the start of the algorithm. In
other words, the strategy does not depend on the realization of the
arrival process thus far. If not, ALG is called adaptive.

Competitive ratio. Let ALG(I,Pu ,Qv ) denote the expected value
obtained by an algorithm ALG on an input I with arrival distri-
butions being Pu and Qv respectively for workers and tasks. Let
OPT(I) denote the expected offline optimal, which refers to the op-
timal value when we are allowed to make decisions after observing
the entire sequence of online workers and tasks. The competitive
ratio for a maximization program as studied in this paper, is defined
as usual [4], infI,Pu ,Qv

E[ALG(I,Pu ,Qv )
E[OPT(I)] . Thus when we say ALG

achieves a ratio at least α ∈ (0, 1), it means that for any instance
of the problem, the expected profit obtained by ALG is at least α
fraction of the offline optimal.

Our contributions. First we propose a novel theoretical model,
called Online Task Assignment with Two-Sided Arrival (OTA-TSA),
where both workers and tasks arrive in an online manner. We con-
sider the arrival setting of KIID and assume that the distributions
can be learned from historical data.
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Second we present a non-adaptive algorithm (NADAP) for the
OTA-TSA, which is optimal among all possible non-adaptive algo-
rithms (see Section 6). We show that NADAP achieves a ratio of
almost 0.3, which is larger than that of 1/4 achieved by an adaptive
algorithm shown in Tong et al. [27] for the same problem but under
the arrival setting of RAO. This is a theoretical evidence showing the
advantage of using historical data to predict the arrival distributions.
Our main approach is to construct and solve an appropriate linear
program (abbreviated as LP) and use that LP solution to guide the
online actions.

Third we propose two adaptive algorithms for two special cases
(see Section 7). The first one is a warmup algorithm, which is greedy
(GREEDY), for the simple unweighted case. We show that it is as
good as the best non-adaptive algorithm NADAP even when us-
ing a loose analysis. In fact there might exist a tighter analysis
for GREEDY which shows that its performance is much better than
NADAP. Our experimental analysis in Section 9 confirms this intu-
ition. The second is an adaptive (ADAP) algorithm for the OTA-TSA
when all the edges incident to each worker—representing the set of
all acceptable tasks for that worker—have the same weight. We show
that ADAP achieves an improved ratio of nearly 0.34. To accomplish
this, we construct and solve a stronger LP than the one used for the
non-adaptive algorithm and combine this with other ideas previously
used for other online matching problems.

Fourth we show an unconditional hardness result for the OTA-TSA:
no adaptive algorithm can achieve a ratio better than 0.58 even for
the unweighted case (Section 8). Note that Brubach et al. [6] gave
an adaptive algorithm, which yields a ratio of 0.729 for the classical
online matching on an unweighted bipartite graph under KIID but
with only one-sided arrival. This formally corroborates our intuition
that the complexity significantly increases from one-sided arrival to
the two-sided arrival.

Finally, we run numerical experiments on two real-world crowd-
sourcing datasets, namely gMission [7] and EverySender [27]. In
particular, we find that despite having provable guarantees, we are
able to obtain much better performance by using GREEDY algorithm.
Our experimental analysis also generalizes this model, where we
assume that at each time-step a batch of workers and batch of tasks
arrive. We discuss intuitions and scenarios on when greedy is the
right choice and when the LP based algorithms are the better option.

While building the theory in this paper, we construct a novel
technical tool, called two-stage birth-death process, to attack the
challenges arising in the competitive ratio analysis and derivation of
hardness results. This technical tool might be of independent interest
to prove competitive ratios in other settings.

2 OTHER RELATED WORK
We now briefly overview related research in the classical online
matching; for a more in-depth review, we direct the readers to a
recent review article by Mehta [19].

Modern online matching research is primarily motivated by Inter-
net advertising applications. In this model, we are given a bipartite
graphG = (U ,V ,E) whereU andV represent respectively the offline
advertisers and online keywords (impressions). Each time, once a
vertex v ∈ V arrives, we have to make an instant and irrevocable
decision: either reject v or assign v to an unmatched neighbor u ∈ U

and obtain a profit we for the match e = (u,v ). The central question
is to design an online allocation policy such that the expected profit
is maximized under different arrival assumptions such as AO, RAO,
and KIID (see e.g., [1, 2, 6, 9, 12, 15, 17, 18, 20]).

Departing from the traditional online matching, Wang and Wong
[28] introduced a theoretical model of online matching (and online
vertex cover) on a general graph G admitting the online arrival
from all vertices. Their setting is as follows: each time a single
vertex comes ( in an adversarial order) and all its incident edges to
previously arrived vertices are revealed. We are required to maintain
a fractional matching (or vertex cover) on the revealed subgraph
so far at all times and the goal is to maximize the size of the final
matching (or minimize the size of the final vertex cover).

3 PROBLEM STATEMENT
Before we describe our OTA-TSA model, we define the following
terminology. We group a set of similar tasks and call them “task
types”. Similarly, we group similar workers and call them “worker
types”. For example, in the context of spatial crowdsourcing, all
workers present at a particular location belong to a single worker
type.

Our model is as follows: suppose we have a bipartite graph
(known to the algorithm)G = (U ,V ,E) whereU andV represent the
set of worker-types and task-types respectively and E represents the
set of worker-task pairs that are “compatible”, i.e., (u,v ) ∈ E iff any
worker of type u can work on tasks of type v. We have a finite time
horizon T (known beforehand) and for each time t ∈ [T ], a worker
u fromU and a task v fromV is sampled (we also say u or v arrives
or comes interchangeably) independently from known probability
distributions Pu = {pu } and Qv = {qv } respectively (i.e.,

∑
u pu = 1

and
∑
v qv = 1). The sampling process is independent across the

different time-steps.
At each time t ∈ [T ], we first observe the online arrivals from U

and V (in that order). Let u and v be the respective arrivals. We then
need to make an instantaneous and irrevocable decision to either
reject v or assign v to one of its available compatible workers in U .
For each u ∈ U , once it arrives, it will stay in the system until being
assigned to some task.1 As discussed in introduction, we have that
|U | ≪ |V |. In our model, we additionally assume that each u has an
integral arrival rate, i.e., T ∗ pu is an integral for every u, and thus
w.l.o.g. we can assume this integer to be 1 (by splitting each u into
T ∗ pu copies). Hence, we assume that |U | = T and pu = 1/T for all
u.2

With each assignment f = (u,v ) we associate a non-negative
profit wf . Let rv = T ∗ qv (referred to as the arrival rate of v)
be the expected number of arrivals of v during the T rounds. We
assume this rate to be any number between [0, 1] (upper bounding
it by 1 is again w.l.o.g. via simple scaling). Our goal is to design
an online assignment policy such that the total expected profits
of all assignments made is maximized. Throughout this paper, we
use edge f = (u,v ) and the assignment of v to u interchangeably.
Additionally, when we say at time t ∈ [T ], we mean we are at the

1Here w.l.o.g. we assume that each worker has the capacity to perform only one task.
In case, some worker type u can perform multiple tasks, we can split u into multiple
copies. This forms the matching constraint for a worker.
2The assumption of integral arrival rate is a standard assumption in the classical online
bipartite matching under known distributions, see e.g., [9].
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beginning of time t either before or after observing the arrivals from
U and/or V (clarified in the context) but before the algorithm has
made an online action.

4 TWO STAGE BIRTH-DEATH PROCESS
We propose a new stochastic process, called two-stage birth-death
process (TS-BDP), and use it as a main tool to analyze our algorithms
and derive hardness results. This technical tool seems more general
and could be of independent interest. The process (described on
random variables {Xt ,Yt } and parameterized by values p and q) is
described as follows. Consider a stochastic process with time horizon
T such that, (1) the process starts at t = 1 with X1 = 0; (2) at every
round t , first there is a birth event followed by an independent death
event. For the birth event, we have Yt = Xt + 1 with probability p/T
and Yt = Xt with probability 1 − p/T . For the death event, it has a
left boundary point of 0; i.e., if Yt = 0, then Xt+1 = Yt , else when
Yt ≥ 1, we have Xt+1 = Yt − 1 with probability q/T and Xt+1 = Yt
with probability 1 − q/T . We refer to p and q as the birth and death
rate of TS-BDP respectively. TS-BDP differs from the classical birth-
death process (BDP) in that, BDP is described as a process where in
every round, birth and death occur each with a respective probability.
On the other hand, in TS-BDP the two events occur independently
in a sequential manner (the birth event is followed by the death
event). Thus, TS-BDP is a special case of BDP. (TS-BDP is a BDP
with time-horizon 2T where every odd step is a birth event and even
step is a death event).

Definition 4.1. A two-stage birth-death process parameterized by
(T ,p,q) (time horizon, birth rate, death rate) refers to a sequence
of random variables {Xt ,Yt |t ∈ [T ]} ∪ {XT+1} which satisfies (1)
X1 = 0 with probability 1; (2) For every t ∈ [T ], Yt = Xt + 1
with probability p/T and Yt = Xt otherwise; (3) For every t ∈ [T ],
if Yt = 0, then Xt+1 = Yt with probability 1; if Yt ≥ 1, then
Xt+1 = Yt − 1 with probability q/T and Xt+1 = Yt otherwise.

In this paper, we are particularly interested in the case when p = 1,
q ≥ 0 is a constant for a sufficiently largeT (T → ∞). We denote this
specialization with TS-BDP(1,q) (or TS-BDP(q) when the context
is clear). For every t ∈ [T ], let ∆(t ,T ) := Yt − Xt+1 and ∆(T ) :=∑
t ∈[T ] ∆(t ,T ), which can be interpreted as the total number of death

events in which Yt is decreased by 1. Let κ (q) := limT→∞ E[∆(T )].
We now state some useful lemmas which we use later.

LEMMA 4.2. (1) κ (0) = 0, (2) κ ′(0) = 1/e, where κ ′(0) is the
first derivative of κ (q) at q = 0.

LEMMA 4.3. (1) 0.295 ≤ κ (1) ≤ 0.302 and (2) κ
(
1 + 1

e (e−1)

)
≥

0.343.

LEMMA 4.4. κ (q) is non-decreasing and concave over q ∈
[0,∞].

Parts of the proof for the above lemmas require rigorous as well as
computer-based analysis. To perform these numerical computations
we use Mathematica 10. All numerical results are precise up to the
third decimal place.

5 LINEAR PROGRAMS (LP)
As is common in this line of work, our algorithms use optimal
solutions to linear programs (LP) constructed on the offline graph

as a guide to the online algorithm. Additionally, this benchmark LP
is used to upper bound the expected value of the optimal solution
on a particular (offline) instance. Hence, to compute a lower bound
on the competitive ratio, it suffices to compute the ratio of the value
obtained by the algorithm to the optimal solution of this benchmark
LP. We now describe the benchmark LP we use for our non-adaptive
algorithm. Later, we show that this can further be strengthened based
on some observations, which is used in our adaptive algorithm.

We associate a variable with every edge f in the graph. For each
edge f , xf denotes the expected number of matches in any offline
optimal matching. For each u (resp. v), let Eu (resp Ev ) be the set of
its neighboring edges. Consider the following LP:

maximize
∑
f ∈E wf xf (1)

subject to
∑
f ∈Ev xf ≤ rv ∀v ∈ V (2)∑
f ∈Eu xf ≤ 1 ∀u ∈ U (3)

xf ≥ 0 ∀f ∈ E (4)

The constraints (2) represent the fact that the expected total num-
ber of matches incident to a task v is no more than the expected
number of arrivals ofv. The same reasoning applies to constraints (3)
but for workers. The constraint (4) represents the fact that the ex-
pected number of matches is non-negative. The objective function
computes the expected reward obtained in the optimal offline so-
lution. Thus we claim that for any offline optimal, {xf } should be
feasible to the above LP. This suggests that LP-(1) is a valid bench-
mark LP (i.e., the optimal value is an upper bound on the offline
optimal). Throughout the paper we assume that {x∗f } is an optimal
solution to this LP (or the stronger LP we define later, as appropri-
ate). We now formally state the following lemma 5.1 showing the
correctness of the benchmark LP.

LEMMA 5.1. The optimal value to LP-(1) is a valid upper bound
for the offline optimal.

6 NADAP: AN OPTIMAL NON-ADAPTIVE
ALGORITHM

In this section, we present a non-adaptive algorithm, denoted by
NADAP, which is optimal among all possible non-adaptive algo-
rithms. Algorithm 1 describes our algorithm formally.

Algorithm 1: An optimal non-adaptive algorithm (NADAP)

1 Let vt be a task arriving at time t ∈ [T ].
2 Sample an edge f = (u,vt ) ∈ Evt with probability x∗f /rvt . If

worker u is available, then assign vt to u; otherwise, skip vt .

Constraint
∑
f ∈Ev x∗f /rv ≤ 1 in LP (2) justifies line 2 in NADAP.

THEOREM 6.1. The non-adaptive algorithm NADAP achieves a
competitive ratio of κ (1) ≥ 0.295 for the OTA-TSA.

PROOF. Consider a given u. Let Xt and Yt be the number of
copies of u before and after the arrival process from U at time t ,
respectively. From the assumption that u arrives with probability
1/T in each round, we have Yt = Xt + 1 with probability 1/T and



Assigning Tasks to Workers based on Historical Data:
Online Task Assignment with Two-sided Arrivals AAMAS’18, July 2018, Stockholm, Sweden

Yt = Xt with probability 1 − 1/T . From NADAP, we have that if

Yt ≥ 1, then it decreases by 1 with probability x ∗u
T �

∑
f ∈Eu

x ∗f
rv

rv
T ≤

1
T and it remains unchanged with the remaining probability (here
x∗u =

∑
f ∈Eu x

∗
f ). From the definition of TS-BDP in 4.1, we have

that {Xt ,Yt } is a TS-BDP(1,x∗u ) with time horizon of T .
Let Af be the (random) number of matches for f = (u,v ) in

NADAP over the T online rounds. Thus, we have:

E[Af ] =
∑
t ∈[T ]

rv
T

x ∗f
rv Pr[Yt ≥ 1] =

∑
t ∈[T ]

x ∗f
T Pr[Yt ≥ 1]

=
x ∗f
x ∗u

∑
t ∈[T ]

x ∗u
T Pr[Yt ≥ 1]

=
x ∗f
x ∗u

∑
t ∈[T ] E[∆t ] (by the definitions of ∆t )

= x∗f
κ (x ∗u )
x ∗u

(taking T → ∞ and by the definition of κ)

From Lemma 4.4, we have that κ is non-decreasing and concave
over [0, 1]. Thus κ (x )−κ (0)

x−0 should be non-increasing over x ∈ [0, 1].
We also have that κ (0) = 0. Therefore,

κ (x ∗u )
x ∗u
=

κ (x ∗u )−κ (0)
x ∗u−0

≥
κ (1)−κ (0)

1−0 = κ (1)

Thus, we have that E[Af ] ≥ x∗f ∗κ (1). Since LP (1) is a valid upper
bound on the optimal offline solution, by linearity of expectation,
we have that NADAP achieves a competitive ratio of κ (1). □

Hardness of non-adaptive algorithms. We will now show that any
algorithm that is non-adaptive, cannot achieve a ratio better than
κ (1). In particular, we prove the following lemma.

LEMMA 6.2. No non-adaptive algorithm can achieve a competi-
tive ratio better than κ (1) even for the unweighted OTA-TSA.

7 TWO ADAPTIVE ALGORITHMS
7.1 Warmup: Greedy for the unweighted case
Consider a simple special case of OTA-TSA where all assignments
have uniform weights and all tasks have an integral arrival rate. In
other words, we assume |U | = |V | = T , pu = pv = 1/T for all
u ∈ U ,v ∈ V , and wf = 1 for all f ∈ E. We formally state our
greedy algorithm in Algorithm 2.

Algorithm 2: Greedy Algorithm (GREEDY)

1 Let vt be a task arriving at time t ∈ [T ].
2 Choose an edge f = (u,vt ) such that f has the largest weight

among all available assignments to vt at time t and assign vt to
u (break ties arbitrarily). Skip vt if none is available.

Notice that for the unweighted case, GREEDY will choose an
arbitrary available worker u whenever a task v arrives. We show that
for the unweight case, GREEDY has a performance at least as good
as that of the optimal non-adaptive algorithm NADAP.

THEOREM 7.1. GREEDY achieves a competitive ratio of at least
κ (1) ≥ 0.295 for the unweighted OTA-TSA.

PROOF. Consider an input graph G = (U ,V ,E) and suppose we
use LP-(1) as the benchmark. Since G is unweighted, we observe
that the optimal value to LP-(1) is exactly equal to the size of a

largest matching, sayM, on G. Let G ′ be the graph consisting of
a perfect matching induced by M. Note that the performance of
GREEDY on G is no worse than G ′. This can be seen as follows.
Recall that during the online process, both u and v will join the
system stochastically; each time when a v comes, GREEDY will
match it to an arbitrary available neighbor u at that time, in which
case we say u is shot down by v. The final performance of GREEDY
is exactly the expected number of u which gets shot down. Consider
a given arrival sequence from U and V , say Su and Sv . Since the set
of neighbors of v on G includes that of v on G ′ as a subset, v will
always have more choice to shoot on G than G ′. This implies that
for any given Su and Sv , the number of u shot down on G will be at
least as much as that on G ′.

Now we analyze the performance of GREEDY on G ′. For a given
f ∈ M, we have that the expected number of matches of f is equal to
κ (1) (from the definition of κ). Thus we can claim that GREEDY has
a performance of κ (1) ∗ |M| on G ′. Therefore the ratio of GREEDY
is at least κ (1)∗|M |

|M |
= κ (1). □

7.2 Adaptive algorithm for the node-weighted case
In this section, we consider a relaxed version of the problem where
for any u ∈ U , all edges in Eu have the same weight wu ≥ 0. We
denote this relaxed problem as OTA-TSA with left-hand side (LHS)
vertex weighted. For this relaxation, one can strengthen the bench-
mark LP (1) by making the following observation; the probability
that an edge can be matched is at most the probability that both the
worker and the task is present at least once in the arrival sequence.
This boils down to computing the expected value of the minimum
of two i.i.d. Poisson random variables with mean upper bounded by
1. We later show that this expected value is at most (1 − 1/e )rv and
hence adding this stronger constraint, we obtain the following strong
LP (5). As a side note, this constraint is also valid for the general
version of edge-weighted OTA-TSA, but the simpler LP suffices for
an optimal non-adaptive algorithm.

maximize
∑
u ∈U wu

∑
f ∈Eu xf (5)

subject to
∑
f ∈Ev xf ≤ rv ∀v ∈ V (6)∑
f ∈Eu xf ≤ 1 ∀u ∈ U (7)

0 ≤ xf ≤
(
1 − 1

e

)
rv ∀f ∈ E (8)

LEMMA 7.2. The optimal value to LP (5) is an upper bound on
the offline optimal for the OTA-TSA with LHS vertex weighted.

Our adaptive algorithm is inspired from an idea used in [17]. Let
{x∗f } be an optimal solution to LP (5). At a particular time-step, when
a task v arrives, we generate a random ordered list L of two choices
from Ev such that it satisfies properties (P1) and (P2).

(P1): Pr[L (1) = f ] =
x ∗f
rv for each f ∈ Ev .

(P2): Pr[L (2) = f ∧ L (1) , f ] ≥
x ∗f
rv

1
e−1 for each f ∈ Ev .

Here L (1) and L (2) denotes the first and second choice on this list
L, respectively.

Later in this section, we will describe how to efficiently generate
a random list satisfying the above two properties. Property (P2)
relies critically on the stronger constraint (8) added into LP (5). On
constructing a random list L at time t , ADAP will make the online
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decision as follows: try the first choice L (1) if it is available; then
go to the second choice L (2); skip vt if neither of the two choices
are available. Thus compared to NADAP, ADAP offers each edge f
a second chance to be tried. Property (P1) ensures that the marginal
distribution is maintained for the first choice; Property (P2) gives
a lower bound that each f can be tried as a second choice — this
is the exact source for the improvement on the final ratio over the
previous NADAP. Algorithm 3 formally describes ADAP.

Algorithm 3: An adaptive algorithm (ADAP)

1 Let vt be a task arriving at time t ∈ [T ].
2 Generate a random list L satisfying properties (P1) and (P2).
3 If first choice L (1) is available, assign vt to L (1); else if

second choice L (2) is available, assign vt to L (2); otherwise
skip vt .

THEOREM 7.3. The adaptive algorithm ADAP achieves a com-

petitive ratio of at least κ
(
1+ 1

e (e−1)

)
≥ 0.32 for the OTA-TSA with

LHS vertex weighted.

PROOF. Consider a worker u. Let Xt and Yt be the number of
copies of u at time t before and after observing the arrival from
U . Notice that from the assumption that u arrives with probability
1/T in each round, we have Yt = Xt + 1 with probability 1/T and
Yt = Xt with probability 1 − 1/T .

Consider the case when Yt ≥ 1 and one compatible task v of
u arrives at t . Let L be the random list that is generated for v at
t . From ADAP, we have that Yt decreases by 1 iff either (1) the
assignment f = (u,v ) is made as a first choice (L (1) = f ) or (2) the
assignment f = (u,v ) is made as a second choice (L (2) = f ) and
the first choice L (1) is unavailable. Thus, we have:

Pr[Xt+1 = Yt − 1|v comes at t ]
= Pr[L (1) = f ]
+ Pr[L (2) = f ∧ L (1) , f ] Pr[L (1) is not available]

≥
x ∗f
rv +

x ∗f
rv

1
e−1 Pr[L (1) is not available]

≥
x ∗f
rv +

x ∗f
rv

1
e−1

1
e =

x ∗f
rv

(
1 + 1

e−1
1
e

)
The inequality on the second line directly follows from properties
(P1) and (P2). The inequality on the third line is due to the fact that
for each given L (1) = (u ′,v ), the probability that it is unavailable is
at least (1 − 1/T )t ≥ 1/e (this refers to the probability that u ′ never
comes in the first t time-steps). Thus, after considering all possible
neighbors of u, we have

Pr[Xt+1 = Yt − 1] ≥
∑

f =(u,v )∈Eu

rv
T

x∗f

rv

(
1 +

1
e − 1

1
e

)
=

∑
f ∈Eu x ∗f
T

(
1 + 1

e−1
1
e

)

Note that, x∗u =
∑
f ∈Eu x

∗
f ≤ 1 due to the constraint on each u

in LP (5). We have that {Xt ,Yt } is a TS-BDP with death rate of

x∗u ∗ q � x∗u

(
1 + 1

e−1
1
e

)
. From the definition of the function κ, we

have that κ (x∗u ∗ q) is equal to the expected number of matches for
worker u. Note that x∗u is the expected number of matches for u from
the benchmark LP (5). Thus the resultant ratio is,

κ (x ∗u∗q )
x ∗u

= q ∗
κ (x ∗u∗q )−κ (0)

x ∗uq−0

≥ q ∗
κ (q )
q = κ (q) = κ

(
1 + 1

e−1
1
e

)
The inequality above is due to the fact that κ is a concave function
over [0,∞] and x∗u ≤ 1. □

Generating L satisfying properties (P1) and (P2). We can gen-
erate a random list L satisfying properties (P1) and (P2) as fol-
lows ([17] first use this idea). For every e ∈ Ev , let ye = x∗e/rv ;
we have that

∑
e ∈Ev ye ≤ 1. Add a dummy edge e ′ = (u ′,v )

with ye ′ = 1 −
∑
e ∈Ev ye (the edge e ′ = (u ′,v ) means we do

nothing when v comes). Create two unit intervals, I1 and I2 as
follows: (1) Sort {ye |e ∈ Ev } ∪ {ye ′ } in an increasing order; let
ye1 ≤ ye2 ≤ . . . ≤ yen be this order; (2) Let Si be a segment of
length yei with a label of ei for each i ∈ [n]. Let I1 be the unit in-
terval formed by {S1,S2,S3, . . . ,Sn } and let I2 be the unit interval
formed by {Sn ,S1,S2, . . . ,Sn−1}.

The random list L is obtained from (I1,I2) is as follows. Choose
a value x ∈ [0, 1] uniformly at random. Let I1 (x ) and I2 (x ) be the
respective label of the segment where x falls on, in the intervals I1
and I2. Set L (1) = I1 (x ) and L (2) = I2 (x ).

LEMMA 7.4. The random list L generated by the procedure
described above satisfies properties (P1) and (P2).

PROOF. To verify property (P1), notice that x is takes a value in
[0, 1] uniformly at random. Thus for each given f ∈ Ev , x falls in
the segment labelled by f in I1 with probability yf = x∗f /rv .

To verify property (P2), we use Observation 4.1 from [17]. From
this Observation, we have that Pr[L (1) = L (2) = f ] = 0, for every
f ∈ Ev with yf ≤ 1/2. Hence we have, Pr[L (2) = f ∧ L (1) ,
f ] = yf . Consider the harder case when yf > 1/2. The event that
L (2) = f ∧ L (1) , f occurs only when x falls in the segment
labelled by f in I2 and x does not fall in the segment labelled by f
in I1. Thus,

Pr[L (2) = f ∧ L (1) , f ] = yf − (2yf − 1) = yf
(
1
yf
− 1
)

≥ yf

(
1

1−1/e − 1
)
=

yf
e−1

The last inequality is becauseyf = x∗f /rv ≤ 1−1/e for every f ∈ Ev

(this follows from the constraint (8)). □

8 HARDNESS RESULTS
We will now prove a hardness result, which also holds for the special
case when there are no weights. (i.e., unweighted) This hardness
result does not depend on the choice of the benchmark LP and hence
is unconditional. This hardness result is obtained due to the inherent
nature of the online process and can be viewed as the online-offline
stochastic gap. In particular, we have the following theorem

THEOREM 8.1. No algorithm can achieve a competitive ratio bet-
ter than κ′ (0)

1−1/e =
1

e−1 ∼ 0.581, even for the unweighted OTA-TSA.
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PROOF. Consider an unweight bipartite graph G = (U ,V ,E)
where |U | = |V | = T and |E | = T which consists of a perfect
matching. Let the arrival rates for every u be 1 with pu = 1/T
and let every v have an arrival rate of ϵ (where ϵ is very small)
with pv = ϵ/T . Here we can arrange a dummy node v ′ such that
pv ′ = 1 − ϵ and v ′ has no any neighbor of u.

Consider a given f = (u,v ). Let OPT-A and OPT-B be the respec-
tive offline and online optimal algorithms. Let Xf be the number
of matches of f in OPT-A after the T rounds. Let Xu and Xv be
the respective number of arrivals of u and v in an offline instance.
We have that Xf = min(Xu ,Xv ). Observe that Xu ∼ Pois(1) and
Xv ∼ Pois(ϵ ). Thus, we have:

E[min(Xu ,Xv )]
=
∑∞
k=1 Pr[Xu ≥ k] ∗ Pr[Xv ≥ k]

=
∑∞
k=1 Pr[Pois(1) ≥ k] ∗ Pr[Pois(ϵ ) ≥ k]

=

(
1 − 1

e

) (
1 − e−ϵ

)
+

(
1 − 2

e

) (
1 − e−ϵ − ϵe−ϵ

)
+ . . .

=

(
1 − 1

e

)
ϵ + o(ϵ )

Hence we have E[Xf ] =
(
1 − 1

e

)
ϵ + o(ϵ ). Let Yf be the number of

matches of f in OPT-B. Similar to the proof in Theorem 6.1, we can
verify that E[Yf ] = κ (ϵ ).Thus the online ratio on the above instance
should be

E[Yf ]
E[Xf ]

=
κ (ϵ )(

1− 1
e

)
ϵ+o (ϵ )

Taking ϵ → 0, we have that the above value is

limϵ→0
κ (ϵ )(

1− 1
e

)
ϵ+o (ϵ )

= limϵ→0
κ (ϵ )
ϵ

1
1−1/e =

κ′ (0)
1−1/e □

From Lemma 4.2, κ ′(0) = 1/e and thus we get our claim.

9 EXPERIMENTS
In this section, we describe the experimental results in this paper.
We consider two datasets from popular crowdsourcing platforms,
namely gMission [7] and EverySender [27]. We test our adaptive and
non-adaptive algorithms on these two datasets. Additionally, we also
consider a generalized version of our model and run experiments to
show that these algorithms are robust enough for practical scenarios
which might slightly vary from the actual model.

Dataset and preprocessing. Both the datasets have the following
information. With every worker there is an associated location (x ,y)
where the worker is present, range of the worker which denotes
the distance up to which they can perform a task, and a success
probability which denotes the chance that this worker will complete
any task. With every task there is an associated location (x ,y) and a
payoff value for completing the task. We group the workers (likewise
for tasks) into a “type” if they share the same location in the sense
that the first two decimal points in the x and y coordinates are the
same. For example, workers at (0.345, 3.546) and (0.342, 3.549) are
grouped as the same “type”. To construct the compatibility graph
between the tasks and workers (i.e., the potential tasks a worker can
perform), we consider every pair of task and worker type and add
an edge between a task and worker type if the Euclidean distance
between them is within the range of the worker type. To construct the

edge weight, we multiply the payoff of the corresponding task type
with the success probability of the corresponding worker type. In the
(LHS) vertex-weighted version of the problem, we use the success
probability as the edge-weight for all the edges incident to this
worker. Recall that in our model all worker types have an uniform
arrival probability 1/|U |. We generate the task arrival probabilities
by choosing a random vector {pv } such that each pv is uniformly
distributed over [0, 1] conditioning on

∑
v pv = 1. We achieve this by

running the file randfixedsum.m due to Roger Stafford.3 Finally
to simulate large batch sizes for workers and tasks, we derive a sparse
version of EverySender, called EverySenderSample, where each
worker and task is chosen with probability 0.25. Table 1 gives basic
statistics of the dataset, which corroborates some of our assumptions
as discussed in the introduction.

Dataset #worker types #task types #edges
gMission 532 712 39758

EverySender 817 3994 340051
EverySenderSample 204 999 21247

Table 1: Properties of our datasets

Heuristics. Alongside our main algorithms NADAP and ADAP, we
adapt certain heuristics previously used for such problems (e.g., [26])
and compare and contrast them with our algorithms under various
practical scenarios. In particular, we consider the following three
heuristics– GREEDY, LP-SCALED and UR-ALG. Both GREEDY and
UR-ALG are agnostic to the underlying LP. The heuristic GREEDY
matches the incoming task to the available worker where the weight
of the assignment is the largest (breaking ties arbitrarily) while
UR-ALG chooses one of the available workers uniformly at ran-
dom. The heuristic LP-SCALED uses the optimal solution x to
LP (1) as a guide to its online actions. When a task arrives, let
w1,w2, . . . ,wk denote the set of compatible workers who are avail-
able. Let xw1 ,xw2 , . . . ,xwk denote the corresponding LP optimal
values. We choose the worker wi with probability xwi /

∑k
j=1 xw j .

Methodology. We parametrize the model with a parameter η which
denotes the number of workers sampled (a.k.a. batch size of work-
ers) in each time-step. Let ∆ denote the ratio of total number of task
arrivals to that of worker arrivals. For each given integral η, in each
time-step we sample η workers and η ∗ ∆ tasks (by repeating the
sampling process i.i.d., η times for workers and η ∗ ∆ for tasks). We
set ∆ = 2 in gMission and ∆ = 5 in EverySender and EverySender-
Sample datasets. The values of ∆ are chosen based on the ratios in
the real arrival sequence for a snapshot when the dataset was curated.
Our experiments are as follows with each experiment consisting of
taking an average over 20 independent runs. First we consider the
case where the batch size of workers is 1 and the batch size of tasks is
1. For this case, we run GREEDY, ADAP and NADAP on the datasets
gMission and EverySender with the node-weighted assumption and
compute the average waiting time for all worker types. In particular,
for each run of the algorithm and each worker in the system we
measure the time until which this worker stays in the system before
getting matched to a task. We then compute the average waiting time
for every worker type across all the runs (counting it multiple times

3 https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-
fixed-sum/content/randfixedsum.m
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Figure 1: Edge-Weighted case on gMission
dataset

Figure 2: Edge-Weighted case on Every-
Sender dataset

Figure 3: Vertex-Weighted case on gMis-
sion dataset

Figure 4: Vertex-Weighted case on Every-
Sender dataset

Figure 5: Average waiting times for work-
ers, gMission dataset

Figure 6: Average waiting times for work-
ers, EverySender dataset

in a single run if a worker type arrives twice). Next we run our main
experiments as follows. For the edge-weighted case, we test NADAP
against the three heuristics GREEDY, LP-SCALED and UR-ALG, on
the datasets of gMission and EverySenderSample over the choices
of η ∈ {1, 5, 10, 15, 20, 25, 30, 35}. For the LHS vertex-weighted case,
we test ADAP against the three heuristics, on the datasets gMission
and EverySender over the choices of η ∈ {1, 2, 3, 4, 5, 6, 7}.

Results and discussion. For brevity, we only show the results of
NADAP, ADAP and GREEDY in the plots. The performance of
LP-SCALED and UR-ALG followed a similar pattern as GREEDY
with LP-SCALED performing slightly better on average and UR-ALG
performing slightly worse on average. The following are several in-
teresting observations. From Figures 1 and 2, we see that NADAP
performs better once the size of batch arrivals in each time increases.
This can be explained as follows. When the batch-arrival size is
small, each arriving task has a limited number of workers to choose
from, since the number of workers who have arrived and are com-
patible is small. In this case, the advantage of greedily matching
an available worker outweighs the potential loss from a mismatch.
However, when batch-arrival size increases and each arriving task
has more options to choose from, the guidance from the LP becomes
effective, since it takes the future arrivals into consideration (in ex-
pectation). For the vertex-weighted case we have that GREEDY is
near optimal. From Figures 3 and 4 we can see that the ratio obtained
by GREEDY is almost close to 1 in all cases. On the other hand the
performance of ADAP slowly increases as the batch size increases.
Our experiments show that GREEDY is the best algorithm when there

are no edge-weights or the weights are only on the workers. Finally
Figures 5 and 6 show the average waiting time for each worker in
the two datasets, in the run of the three algorithms. Since, GREEDY
makes a choice whenever a compatible worker is available, it has
the least waiting times. Similarly since ADAP makes strictly more
assignments than NADAP, the workers in ADAP have the next least
waiting time and in many cases much lesser than NADAP. Note how-
ever that the difference in the average of averages for GREEDY and
NADAP is around 1.5-2.5% with respect to T in both the datasets
and hence, is not considerably large.

10 CONCLUSION & FUTURE DIRECTIONS
In this paper, we gave a novel mathematical model for crowdsourc-
ing platforms where the number of workers are far lesser than the
number of tasks (e.g., UberEats delivering food to customers). We
proposed an LP-based non-adaptive algorithm for the edge-weighted
case, and GREEDY and another LP-based adaptive algorithm for
the unweighted and vertex-weighted respectively. These algorithms,
as we show in this paper, can be theoretically analyzed to prove
lower bounds on their competitive ratios. On the hardness side, we
prove hardness results for this problem based on this LP. Finally, we
run experiments on two real-world datasets and compare the perfor-
mance of the algorithms. In fact, we also conduct experiments on a
generalized setting of the model by incorporating batch arrivals and
show regimes where LP based algorithms outperform GREEDY and
vice-versa. Counter to many prior work in online matching where
GREEDY performs bad, in some case of our model GREEDY can
perform well (and sometimes be optimal).
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