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Problem Formulation SemiBwK-RRS

. Constrained to be Running Time
- n atoms, d resources with budget B for each independent set in - Let LCB=0, UCB=1 when #samples=0
: P : O(Time to solve LP)+
T rounds matroid — A t—
, _ © Fort=1,2,.., T O(Time to obtain a random feasible solution for matroids)
For t_1 y 2, ...T ~ - J
- ALG chooses subset of atoms (a.k.a. arm) F; For each atom: re-compute UCB for O(n?)

Nature chooses “outcome matrix”; reward and consumption for each rewards and LCB for consumption

resource from fixed distribution over “outcome matrices . Solve LP with these estimates

- ALG observes reward and consumption for all atoms in Fi

maximize i - X

Reward and consumption for each resource = sum over F_t * Rounc th_e LP 30|Uti0_n using subject to  Cr (j)-x < B0=9 e g
- Stop when one resource exhausted Randomized Rounding Schemes wep 0
from prior work
( )
Special Cases: Semi-Bandits (no resources), Bandits with - Same expectation, negative
k Knapsacks (|Fi=1) ) correlation -> Chernoff-like bounds
OPT o ET].co Xi| <TL.<E[X;] VSC[m 2.1
- Pull the atoms in this set and observe =~ = ¢° J < Ties ELXG m 2D
L . Best dynamic policy if outcome feedback E|[[ics(l —Xi)] <ILegEQ - Xi] VS C[m]  (2.2)
[ Minimize regret : OPT - E[Total reward of ALG] j distribution is known
Applications Prior Work Open Directions
1.Dynamic Pricing with Limited Supply:
Bandits with Knapsacks (BwK) Combinatorial Semi-Bandits . - _
B copies each of k products, T rounds. Time t, buyer : QS\;Z?SrgZIr?WK rewards and/or resources chosen
draws a valuation vector from a fixed distribution.
Algorithm assigns prices from finite set S for each of the - Special Cases | * Extends adversarial bandits
k products. Buyer buys products with valuation > offered [Guha, Munagala '07], [Gupta et | * Adversarial | . Seems really hard, even for (very) special cases
orice. Find the “right” price al.,’11], [Tran-Tranh et al., ’12], [Gyorgy et al., '07]
' | ' [Combes et al., ’15] « i.i.d. setting  Sub linear regret impossible -> comp. ratio?
2.Dynamic Assortment: + First fully general model [Gai et al., "10], [Chen, et al., - BwK + other classical bandit models
: L : : idi L '13], [Kveton, et al., '14], [Kveton, et al.,
B copies of d products with fixed price, T rounds. Time [Badanidiyuru et al., "13] . . . _
) ) « Contextual bandits + semi-bandits + BwK: natural
t, buyer draws a valuation vector from a fixed + Subsequent follow-up 15], [Combes, et al., "19] direction
i . [Agrawal, Devanur ’14] » Subsequent follow-up
distribution. Algorithm shows a subset of k products. 7 ’ , ! , _ _
Buyer buys products with valuation > fixed price. Find [Badanidiyuru, et al., ’14], [Agrawal, et [Kveton et al., "14], [Wen et al., * Prior work combined any 2 out of these 3
y“ | ' al., ’16], [Agrawal, Devanur ’16] '15], [Krishnamurthy et al., "16]
the “right” subset to sell.
- Exponential improvement over naive BwK
- Compared to using [Agrawal, Devanur '16]
- Factor of (k|S|)15 improvement for (1) Challeng‘es
- Factor of d/k improvement for (2) . Bandits

« Exploration-Exploitation trade-off
« Adaptive exploration - remove definite “bad” arms, explore only uncertain arms

Main Theoretical Result . Semi-Bandits

« Handling exponentially many actions in terms of regret and running time
« Handling additional feedback

« UCB-based algorithm achieving the following bound

There exists a randomized algorithm for this problem which achieves e BWK

the following regret - Adaptive Exploration to resource setting?

« Exploration consumes resources; Good reward more consumption vs. less reward less consumption
O(vn(OPT /B + T + OPT)) « OPT no longer best expected per-round reward; Best dynamic policy

* Newer challenges in Semi-BwK

e Deal with distribution over subsets of atoms
 In BwK “just” distribution over atoms.

with the following assumptions B > 3(an + vanT) where o = 6(log(ndT’))

« “Shape” of regret consistent with BwK literature

» Optimal for special cases: BwK, Combinatorial Semi-Bandits Proof Overview

» Orders of magnitude improvement over using prior work to this model - Step 1: Optimal value of LP at each time-step at least 1/T * OPT w.h.p.

« Matroid assumption general enough for many applications

- Exponential improvement over using naive BwK « Step 2: High probability bound on difference between total reward of

algorithm and optimal value
* Negative correlation implies strong concentration — exploit this!
« Combine with concentration bounds from [Babiaoff et al (EC '12)]

Numerical Results

Lemma 6.9. Consider SemiBwK without stopping. Then with probability

Dynamic Assortment (n=26, B=T/2, d=1, K=2) Dynamic Pricing (n=26, B=T/2, d=1, K=2) at least 1 —nTe™); Karthik A. Sankararaman
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0 0 Lemma 6.10. Consider SemiBwK without stopping. Then with probability
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Value of T Value of T

vjeld | Zte[T] xt(J) — Zte[T] Cy (J) - x¢| < VanBe + an + vanT.

https://arxiv.org/abs/

O SemiBwK-RRS OMM linBwK- | PD-BwK O LP-OPT
e EEERE N From LP constraints we have, > ;. C¢ (j) - x¢ < (1 —¢€)B. 1705.08110

Comparison of Running Times
13 Hence combining this with Lemma 6.10, we have

10 2t<7 Ct(J) Y < (1—-€)B+eB < B.

P e S « Concentration Theorem

Let Zp = {(1a : a € A,t € [T]} be a family of random variables taking
values in [0, 1]. Assume random variables {(; , : @ € A} satisfy property (2.1)
given Z;_1 and have expectation % given Z;_1, for each round ¢t. Let Z =
10 20 30 40 50 75 100 % D ac Ate[T] Ct.o be the average. Then for some absolute constant c,

Value of n

log(micro seconds per step)
~

Pr[Z > s +n)<c e 2 (Vn > 0).



mailto:kabinav@cs.umd.edu
mailto:slivkins@microsoft.com
https://arxiv.org/abs/1705.08110
https://arxiv.org/abs/1705.08110
mailto:kabinav@cs.umd.edu
mailto:slivkins@microsoft.com
https://arxiv.org/abs/1705.08110
https://arxiv.org/abs/1705.08110

