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Problem Formulation

• UCB-based algorithm achieving the following bound

There exists a randomized algorithm for this problem which achieves 
the following regret

B > 3(αn+
√
αnT )with the following assumptions where α = Θ(log(ndT ))

Main Theoretical Result

Numerical Results

SemiBwK-RRS

Applications
1.Dynamic Pricing with Limited Supply:  

B copies each of k products, T rounds. Time t, buyer 

draws a valuation vector from a fixed distribution. 

Algorithm assigns prices from finite set S for each of the 

k products. Buyer buys products with valuation > offered 

price. Find the “right” price. 

2.Dynamic Assortment: 

 B copies  of d products with fixed price, T rounds. Time 

t, buyer draws a valuation vector from a fixed 

distribution. Algorithm shows a subset of k products. 

Buyer buys products with valuation > fixed price. Find 

the “right” subset to sell. 

• Exponential improvement over naive BwK 

• Compared to using [Agrawal, Devanur ’16] 

• Factor of (k|S|)1.5 improvement for (1) 

• Factor of d/k improvement for (2)

Running Time

Open Directions

Proof Overview
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• Step 1: Optimal value of LP at each time-step at least 1/T * OPT w.h.p. 

• Step 2: High probability bound on difference between total reward of 
algorithm and optimal value 

• Negative correlation implies strong concentration — exploit this! 
• Combine with concentration bounds from [Babiaoff et al (EC ’12)]

• Step 3: W.H.P. algorithm doesn’t run out of resources in T time-steps 

• Regret analyzed conditioned on this clean event

From LP constraints we have,
∑

t≤T C−
t (j) · xt ≤ (1− ϵ)B.

Hence combining this with Lemma 6.10, we have
∑

t≤T Ct(j) ·Yt ≤ (1 − ϵ)B + ϵB ≤ B.
• Concentration Theorem

• n atoms, d resources with budget B for each 
• T rounds 
• For t=1, 2, …T 

• ALG chooses subset of atoms (a.k.a. arm) Ft 

• Nature chooses “outcome matrix”: reward and consumption for each 

resource from fixed distribution over “outcome matrices” 
• ALG observes reward and consumption for all atoms in Ft 

• Reward and consumption for each resource = sum over F_t 
• Stop when one resource exhausted

Constrained to be 
independent set in 

matroid

Minimize regret : OPT - E[Total reward of ALG] Best dynamic policy if outcome 
distribution is known 

OPT 

• Let LCB=0, UCB=1 when #samples=0 

• For t=1, 2, .. , T 

• For each atom: re-compute UCB for 
rewards and LCB for consumption 

• Solve LP with these estimates 

• Round the LP solution using 
“Randomized Rounding Schemes” 
from prior work 

• Same expectation, negative 
correlation -> Chernoff-like bounds 

• Pull the atoms in this set and observe 
feedback

Õ(
√
n(OPT/

√
B +

√
T +OPT ))

• “Shape” of regret consistent with BwK literature  

• Optimal for special cases: BwK, Combinatorial Semi-Bandits 

• Orders of magnitude improvement over using prior work to this model 

• Matroid assumption general enough for many applications 

• Exponential improvement over using naive BwK

• Adversarial BwK — rewards and/or resources chosen 
by adversary 

• Extends adversarial bandits 

• Seems really hard, even for (very) special cases 

• Sub linear regret impossible -> comp. ratio? 

• BwK + other classical bandit models 

• Contextual bandits + semi-bandits + BwK: natural 
direction 

• Prior work combined any 2 out of these 3

Prior Work

Special Cases: Semi-Bandits (no resources), Bandits with 
Knapsacks (|Ft|=1)

Bandits with Knapsacks (BwK) Combinatorial Semi-Bandits

• Special Cases 
       [Guha, Munagala ’07], [Gupta et 
al., ’11], [Tran-Tranh et al., ’12], 
[Combes et al., ’15] 
• First fully general model 
        [Badanidiyuru et al., ’13] 
• Subsequent follow-up 
        [Agrawal, Devanur ’14], 
[Badanidiyuru, et al., ’14], [Agrawal, et 
al., ’16], [Agrawal, Devanur  ’16]

• Adversarial 
  [Gyorgy et al., ’07] 
• i.i.d. setting 
  [Gai et al., ’10], [Chen, et al., 
’13], [Kveton, et al., ’14], [Kveton, et al., 
’15], [Combes, et al., ’15] 
• Subsequent follow-up 
  [Kveton et al., ’14], [Wen et al., 
’15], [Krishnamurthy et al., ’16] 

Let ZT = {ζt,a :a ∈ A, t ∈ [T ]} be a family of random variables taking
values in [0, 1]. Assume random variables {ζt,a :a ∈ A} satisfy property (2.1)
given Zt−1 and have expectation 1

2 given Zt−1, for each round t. Let Z =
1
nT

∑
a∈A,t∈[T ] ζt,a be the average. Then for some absolute constant c,

Pr[Z ≥ 1
2 + η] ≤ c · e−2mη2

(∀η > 0).

Lemma 6.9. Consider SemiBwK without stopping. Then with probability
at least 1− nTe−Ω(α):

|
∑

t∈[T]rt −
∑

t∈[T]µ
+
t · xt| ≤ O

(√
αn

∑
t∈[T]rt +

√
αnT + αn

)

Lemma 6.10. Consider SemiBwK without stopping. Then with probability
at least 1− nTe−Ω(α):

∀j ∈ [d] |
∑

t∈[T ]χt(j)−
∑

t∈[T ]C
−
t (j) · xt| ≤

√
αnBϵ + αn+

√
αnT .

maximize µ+
t · x

subject to C−
t (j) · x ≤ B(1−ϵ)

T , j ∈ [d]
x ∈ P

E
[∏

i∈S Xi

]
≤

∏
i∈S E[Xi] ∀S ⊆ [m] (2 .1)

E
[∏

i∈S(1 −Xi)
]
≤

∏
i∈S E[1 −Xi] ∀S ⊆ [m] (2.2)

• Bandits 
• Exploration-Exploitation trade-off 
• Adaptive exploration - remove definite “bad” arms, explore only uncertain arms 

• Semi-Bandits 
• Handling exponentially many actions in terms of regret and running time 
• Handling additional feedback 

• BwK 
• Adaptive Exploration to resource setting? 
• Exploration consumes resources; Good reward more consumption vs. less reward less consumption 
• OPT no longer best expected per-round reward; Best dynamic policy 

• Newer challenges in Semi-BwK  

• Deal with distribution over subsets of atoms 
• In BwK “just” distribution over atoms.

Challenges
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