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Bandits with Knapsacks (BwK)

K arms, T rounds, d resources.
Resource budgets B1, . . . , Bd.

In each round t ∈ [T ]:
• Choose arm at ∈ [K]
• Observe outcome vector ot(at) ∈ [0, 1]d+1:

reward rt, consumption cj,t ∀ resource j ∈ [d]
• Stop, if some resource runs out of budget

Goal: Maximize the total reward.

• Outcomes (ot(a) : arms a ∈ [K]) chosen IID
• Benchmark: best fixed distribution over arms
• w.l.o.g. rescale consumption so that Bj = B.

Motivating Examples

Dynamic Pricing & Auctions:
d products, limited supply of each.
Seller adjusts prices (resp., auction parameters)
over time to maximize total revenue

Crowdsourcing markets:
Many similar tasks, limited budget.
Contractor dynamically adjusts wages
to maximize #completed tasks
(extension: d types of tasks, budget for each)

Many more examples in prior work.

Worst-Case Regret : Well-Understood

Optimal
√

T -like regret (upper & lower bounds)
(Badanidiyuru, Kleinberg, Slivkins ’13).

Achieved by four different algorithms.
Our focus: UcbBwK (Agrawal, Devanur ’14),
based on “optimism under uncertainty".

Optimal(-ish) worst-case regret bounds
known for many extensions of BwK
(Agrawal, Devanur ’14 ’16; Badanidiyuru et al.’14;
Agrawal et al., ’16; Sankararaman, Slivkins ’18).

3 results “beyond the worst case”

• Instance-dependent logarithmic regret:
Full characterization: upper & lower bounds.
Main open question for stochastic BwK.

• Small per-round regret in all but few rounds
• Large-but-structured action sets:

reduction from BwK to bandits

Results: Logarithmic Regret

Without resources: optimal regret O(K log T
gap ),

Reward gap: between the best and 2nd-best arm.
How to generalize it to BwK / resources?

• Lagrange gap: version of "gap" for BwK
use Lagrangian functions L of LP-relaxation.

Glag(a) := L(a∗, λ∗) − L(a, λ∗)
Glag := min

arms a∕=a∗
Glag(a)

a∗ = best arm, λ∗ = optimal dual solution.

• Theorem: O(KG−1
lag log T ) regret

Only for best-arm-optimal instances:
when best fixed distribution over arms is
supported on {a∗, skip} and is unique.

Only for d = 2 resources:
paradigmatic case for most examples of BwK.

• Theorem: Both conditions are necessary:
essentially, Ω(

√
T ) regret otherwise,

for any algorithm & wide family of instances.
• Algorithm: UcbBwK (with a new analysis)

Worst-case optimal even if the conditions fail.

Results: Per-round Regret

At each round t, regt := opt/T − rewt

Theorem: For all ε > 0, UcbBwK achieves
regt < ε in all but ≤ Õ(Kε−2) rounds t.

Assumes B > Ω(T ), paradigmatic case in BwK.

Fairness motivation: each round = single user,
reward = user’s utility, opt/T = fair share.
Thus, regt = deviation from fair share.

In bandits, such result implies O(log T ) regret,
but in BwK it does not.

Result: Reduction to Bandits

UCB analysis for X bandits =>
UcbBwK algorithm works for X BwK

Applications: X = {contextual, semi-, MNL}

• Contextual bandits: at each time t, observe
context xt before choosing an action

• Semi-bandits: at each time t, choose ≤ m
arms, observe the outcome for each of them

• MNL bandits: at each time t, choose ≤ m
arms, then one “final" arm is chosen via
multinomial logistic distribution (MNL).

For each application X, three results:

• worst-case regret: simple corollary.
In prior work, each X is a separate paper!

• logarithmic regret (new)
• per-round regret (new)

Caveat: our reduction does not come with
a computationally efficient implementation.

Some philosophy: BwK is one of several "prob-
lem dimensions" in bandits. Reductions along
one "dimension", such as ours, is a good way to
handle a "multi-dimensional" problem space

Key Technical Ingredients

Logarithmic Regret Upper Bound

• LP sensitivity for each non-optimal arm a,
increase expected reward and decrease
expected consumption by ≤ δ(a).
Let X∗ be the new optimal LP-solution.
If a ∈ support(X∗), then δ(a) > Glag.

• Applied to UcbBwK: each non-optimal arm
chosen in ≤ O(KG−2

lag log T ) rounds
• Careful accounting of reward/consumption

⇒ regret O(KG−1
lag log T )

Confidence Sum:
!

t∈S⊆[T ] ConfTerm(at)
for a given subset S of rounds

• abstracts a key object in a typical analysis
of an "optimism under uncertainty" algorithm.

• the main step in such analyses provides
a uniform upper-bound on the confidence sum
which holds for any algorithm

• our reduction inputs such result as a lemma.
• we also use confidence sums to analyze

per-round regret of UcbBwK

Gap: two different notions for BwK,
both generalize "reward gap" for bandits

• "Lagrange gap" (as defined above)
• "LP gap" for distribution X over arms:

optimal LP-value minus LP-value of X .
Used to analyze per-round regret.


