Bandits with Knapsacks: Beyond the Worst-Case Analysis

Bandits with Knapsacks (BwK)

K arms, T rounds, d resources. Resource budgets B_1, \ldots, B_d .

In each round $t \in [T]$:

• Choose arm $a_t \in [K]$

• Observe outcome vector $\mathbf{o}_t(a_t) \in [0, 1]^{d+1}$: reward r_t , consumption $c_{j,t}$ \forall resource $j \in [d]$

• Stop, if some resource runs out of budget

Goal: Maximize the total reward.

- Outcomes ($\mathbf{o}_t(a)$: arms $a \in [K]$) chosen IID
- Benchmark: best fixed distribution over arms
- w.l.o.g. rescale consumption so that $B_i = B$.

Motivating Examples

Dynamic Pricing & Auctions:

d products, limited supply of each. Seller adjusts prices (resp., auction parameters) over time to maximize total revenue

Crowdsourcing markets:

Many similar tasks, limited budget. Contractor dynamically adjusts wages to maximize #completed tasks (extension: d types of tasks, budget for each)

Many more examples in prior work.

Worst-Case Regret : Well-Understood

Optimal \sqrt{T} -like regret (upper & lower bounds) (Badanidiyuru, Kleinberg, Slivkins '13).

Achieved by *four* different algorithms. Our focus: UcbBwK (Agrawal, Devanur '14), based on "optimism under uncertainty".

Optimal(-ish) worst-case regret bounds known for many extensions of BwK (Agrawal, Devanur '14 '16; Badanidiyuru et al.'14; Agrawal et al., '16; Sankararaman, Slivkins '18).

Karthik Abinav Sankararaman (Facebook)

3 results "beyond the worst case"

- Instance-dependent logarithmic regret: Full characterization: upper & lower bounds. Main open question for stochastic BwK.
- Small per-round regret in all but few rounds
- Large-but-structured action sets: reduction from BwK to bandits

Results: Logarithmic Regret

Without resources: optimal regret $O(\frac{K \log T}{gap})$, **Reward gap**: between the best and 2nd-best arm. How to generalize it to BwK / resources?

• Lagrange gap: version of "gap" for BwK use Lagrangian functions \mathcal{L} of LP-relaxation.

• Theorem: $O(KG_{lag}^{-1} \log T)$ regret

Only for **best-arm-optimal instances**: when best fixed distribution over arms is supported on $\{a^*, skip\}$ and is unique.

Only for d = 2 resources: paradigmatic case for most examples of BwK.

- **Theorem:** Both conditions are necessary: essentially, $\Omega(\sqrt{T})$ regret otherwise, for any algorithm & wide family of instances.
- Algorithm: UcbBwK (with a new analysis) Worst-case optimal even if the conditions fail.

A re A F re

bu

Aleksandrs Slivkins (Microsoft Research NYC)

Results: Per-round Regret

t each round t , $reg_t := opt/T - rew_t$
heorem: For all $\varepsilon > 0$, UcbBwK achieves $\exists g_t < \varepsilon$ in all but $\leq \tilde{O}(K\varepsilon^{-2})$ rounds t.
ssumes $B > \Omega(T)$, paradigmatic case in BwK.
airness motivation: each round = single user, ward = user's utility, $opt/T = fair$ share. hus, $reg_t = deviation$ from fair share.
a bandits, such result implies $O(\log T)$ regret, at in BwK it does not.
Result: Reduction to Bandits

JCB analysis for X bandits =>	
JcbBwK algorithm works for X BwK	

- Applications: X = {contextual, semi-, MNL}
- Contextual bandits: at each time t, observe context x_t before choosing an action • Semi-bandits: at each time t, choose $\leq m$ arms, observe the outcome for each of them • MNL bandits: at each time t, choose $\leq m$ arms, then one "final" arm is chosen via multinomial logistic distribution (MNL).
- For each application X, three results:
- worst-case regret: simple corollary. In prior work, each X is a separate paper! • logarithmic regret (new) • per-round regret (new)
- **Caveat**: our reduction does not come with a computationally efficient implementation.
- Some philosophy: BwK is one of several "problem dimensions" in bandits. Reductions along one "dimension", such as ours, is a good way to handle a "multi-dimensional" problem space

Key Technical Ingredients

Logarithmic Regret Upper Bound

• LP sensitivity for each non-optimal arm a, increase expected reward and decrease expected consumption by $\leq \delta(a)$. Let X^* be the new optimal LP-solution. If $a \in \text{support}(X^*)$, then $\delta(a) > G_{\text{lag}}$. • Applied to UcbBwK: each non-optimal arm chosen in $\leq O(KG_{lag}^{-2}\log T)$ rounds • Careful accounting of reward/consumption \Rightarrow regret $O(KG_{lag}^{-1}\log T)$

Confidence Sum: $\sum_{t \in S \subset [T]} \texttt{ConfTerm}(a_t)$ for a given subset S of rounds

• abstracts a key object in a typical analysis of an "optimism under uncertainty" algorithm. • the main step in such analyses provides a uniform upper-bound on the confidence sum which holds for any algorithm • our reduction inputs such result as a lemma. • we also use confidence sums to analyze per-round regret of UcbBwK

Gap: two different notions for BwK, both generalize "reward gap" for bandits

• "Lagrange gap" (as defined above) • "LP gap" for distribution X over arms: optimal LP-value minus LP-value of X. Used to analyze per-round regret.