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Managing perishable inventory, such as blood stock awaiting use by patients in need, has been a topic of
research for decades. Yet, most research focuses on the effective use of this scarce resource across the blood
supply chain, and assumes the supply of blood itself can be impacted only via coarse policy levers. In this paper,
empowered by the recently-deployed Facebook Blood Donation tool, we choose instead to model the first
stage of the full blood supply chain—that is, the supply of blood itself—as a matching market. Here, potential
blood donors are matched to donation centers by way of a central recommendation engine; that engine can at
some cost prompt (e.g., via push notification) individual donors to donate to a preferred center or centers.
Potential donors may have other constraints (e.g., maximum allowable frequency of prompts) or preferences
(e.g., geographic, social) that should be taken into account. We develop policies for matching potential blood
donors to donation centers under these constraints and preferences, and under simple models of demand
shocks to the system. We test these policies in both computational simulations and real-world experiments
on the Facebook Blood Donation tool. In both the simulated and real experiments, these matching-based
notification policies significantly increase the expected number of blood donations.

1 INTRODUCTION
Blood is a scarce resource; its donation saves the lives of those in need. Countries approach blood
donation in different ways, running the gamut from privately-run to state-run programs, with or
without monetary compensation, and with varying degrees of public campaigns for action.1 As
such, blood donation rates differ across different countries; for example, approximately 3.2%, 1.5%,
0.8%, and 0.5% of the population donates in high-, upper-middle-, lower-middle-, and low-income
countries, with varying rates of voluntary versus paid donors [37]. The case remains, though,
that many patients do not have timely access to blood, especially in times of need. Thus, the
World Health Organization (WHO) recommends that the blood supply chain—collection, testing,
processing, storage, and distribution—be managed at a national level [37].
Optimization-based approaches to management of the blood supply chain have a rich history

in the operations research and healthcare management literature. A recent paper [28] overviews
over 100 publications in this space since the 1960s. The supply chain is roughly split into collection,
testing & processing, storage & inventory, and distribution & transfusion [29]. Substantial research
effort has gone into each of those segments [11, 24, 40]. Yet, we note that most optimization-based
research in the initial collection stage of the blood supply chain has focused on prediction of blood
supply (e.g., during a crisis). Given the ubiquity of social networks, in this work, we dovetail with
that research by focusing instead on the creation of new blood supply via automated social prompts,

1Some examples follow. China maintains state control of its donation centers, which take a mix of captive-, quota-, and
voluntary-based donations [20]. The US mixes state- and private-run donation that is primarily sourced via voluntary
donations [28]. Brazil has seen a recent shift from remunerated to non-remunerated (aka voluntary) donation at its initially
state-run, and now Federally-run, centers [6].
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subject to the expressed preferences and constraints of potential donors and the overall donation
system. We refer to this as the donor recruitment stage of the blood supply chain (see Figure 1).
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Fig. 1. Stages of the blood supply chain. Our work–donor recruitment–precedes the four stages of the blood
supply chain as described in [28].

In this paper, we begin with an overview of related work on coordinating blood donors, and
understanding their motivations (§2). Next we discuss the potential role that social media platforms
might play in the blood donation process (§3); we present initial insights from the Facebook Blood
Donation tool, and train a machine learning (ML) model for predicting when a notification will
encourage donor action. Using these insights, we frame blood donor recruitment as a matching
problem. Here, we draw on intuition from the literature investigating online bipartite matching
under various arrival distribution assumptions, per-vertex and per-side budget constraints, and
so on [18, 26]. Recent work in online matching has moved into more complex markets (e.g.,
crowdsourcing [21], rideshare [10], and kidney exchange [3, 4]), and has shown that—even in the
face of theoretical intractability—sophisticated matching techniques can lead to improvements in
economic efficiency. We aim to show a similar result here: we design a class of stochastic matching
policies which allocate notifications fairly between recipients (§4).

This work is motivated by the recently developed Facebook Blood Donation tool2, which connects
millions of potential blood donors with opportunities to donate, in several countries around the
world. We use anonymized data from the Facebook Blood Donation tool to build our matching
model, and simulate various matching policies. Computational result indicate that even a relatively
simple matching policy can greatly increase the magnitude of blood donations–while also treating
recipients equitably. Finally, we run an online A/B test using the Facebook Blood Donation tool,
to compare a (realistic) random baseline matching policy with a simple version of our proposed
approach. We demonstrate that our simple policy substantially increases the expected number of
donations, over the randomized baseline (§6).

2 RELATEDWORK
In this paper we focus on the recruitment and coordination of potential blood donors, in order to
meet ever-changing demand. While little work has focused on the coordination of blood donors
and recipients, donor recruitment has been an active research area for decades; see [28] for a
comprehensive review of prior work on the blood supply chain at-large. In §2.1 we discuss prior
work related to donor recruitment; recently, in §2.2 we discuss similar work investigating the role
2https://socialgood.fb.com/health/blood-donations/
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of the web and social media in blood donation. In §2.3 we briefly outline related approaches from
the matching literature.

2.1 Understanding Donor Supply and Demand
Both extrinsic and intrinsic factors related to the donor and recipient play a role in understanding
donation behavior. Extrinsic motivators such as influence from family or friends, or media and
advertising, can increase donation rates [33]. In a controlled trial, Reich et al. [31] finds that
empathetic messaging over phone and email can also encourage donation, more so than a material
incentive. The medium used to recruit a donor is also important–whether in-person, over the
phone, or in an email or letter [5]. Non-monetary incentives such as concert tickets or travel
reimbursement can also influence donor behavior. In a review, Chell et al. [7] finds that these
incentives are especially effective among young, first-time, and infrequent donors [7]; however
some studies report the opposite effect among certain donor populations [15].
Intrinsic factors of the donor and perception of the donation experience also impact donation

rates. Several studies report that a strong intention to donate and a sense of altruism are associated
with higher donation rates [16, 33, 35]. Perceived difficulties in planning to donate can also impede
donation rates [17, 35]. Many of these studies find that past donation behavior is a strong predictor
of future donations [5, 16, 17] Both Schreiber et al. [32] and Yu et al. [38] find that first-time donors
who donate frequently in the first year are more likely to be regular donors in the future.

A related area of research aims to predict supply and demand of donor blood, in order to avoid both
shortages and waste. Techniques including forecasting [9], classification [27], and regression [14]
have been used for decades to predict both supply and demand for donor blood.

Most importantly, many prior studies find that different donors are motivated by different factors.
This suggests that personalized recruitment strategies–which respect diverse donor motivations,
preferences, and perceived barriers to donation–will be more effective than a uniform recruitment
strategy. As social influence and direct communication play an important role in donor recruitment,
it is natural that social media (and generally, web-based apps) will play a role in the blood donation
process. Indeed several recent studies have addressed the role of social media in blood donation;
next we briefly outline this work.

2.2 Web Applications, Social Media, and Blood Donation
Web-based applications (apps) and social media platforms already play a substantial role in blood
donor recruitment. Indeed, the American Red Cross, which claims to provide about 40% of transfused
blood in the United States,3 recently launched an app to connect blood donors with donation
opportunities.4 One review identified 169 different free mobile apps for blood donation [30]; though
many of these apps have usability and privacy issues that may prevent widespread use. Regardless
of whether these apps are available, it is important to understand whether donors will use these
apps to find donation opportunities. Using a survey, Yuan et al. [39] finds that potential donors
are receptive to using a web-based app to find and schedule blood donation appointments – and
interest is especially high for young and infrequent donors. Respondents also expressed concern
about privacy and receiving too many alerts from such an app; these are also primary concerns in
our work.
Social media platforms also play an increasing role in blood donor recruitment. Sümnig et al.

[34] finds that social media platforms (including Jodel and Facebook) are a major motivation for

3https://www.redcrossblood.org/donate-blood/how-to-donate/how-blood-donations-help/blood-needs-blood-
supply.html
4https://www.redcrossblood.org/blood-donor-app.html

https://www.redcrossblood.org/donate-blood/how-to-donate/how-blood-donations-help/blood-needs-blood-supply.html
https://www.redcrossblood.org/donate-blood/how-to-donate/how-blood-donations-help/blood-needs-blood-supply.html
https://www.redcrossblood.org/blood-donor-app.html
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blood donors – especially for first-time donors. Similar studies have found that platforms including
WhatsApp and Twitter influence donors in Saudi Arabia [2] and India [1]. A recent survey conducted
with Facebook’s partner blood banks found that 20% of donors said that Facebook influenced their
decision to donate.5

2.3 Online Matching
The study of online bipartite matching problems goes back decades, to at least the seminal work of
Karp et al. [23]. Mehta [26] provides an in-depth review of online matching models; we provide a
short overview of related work here. One way to partition work in online matching is by input
model—roughly, what kind of information the centralized matching mechanism is given about
the way vertices arrive. Under the very conservative adversarial case (e.g., the model of [23]), the
model is given no information about arrivals. Stochastic input models [13, 22] such as random
order—where the input graph is chosen adversarially, but arrives randomly—and unknown IID—
where vertices of particular types are drawn IID from an unknown distribution over types—are
two less conservative input models. Our paper operates most closely to an even less conservative
model—known IID, where vertices are drawn IID from a known distribution over types. This model
can be appropriate when a matchmaker has access to vast amounts of data and can learn the
distribution offline. This is common in the era of platform (rideshare, online labor) and advertising
markets, and is true in our setting as well. Our setting is also related to another form of stochastic
matching (see, e.g., [19]), where a matched edge may or may not exist (e.g., a push notification may
or may not convert to an actual blood donation event). Finally, recent work (e.g., [10, 25]) looks at
matching with reusable resources, primarily motivated by rideshare where a driver is matched for
the course of a trip, and then reappears. In our setting, blood donors are matched and then taken
offline for some number of time periods before reappearing as available, potential matches.

3 FACEBOOK’S ROLE IN BLOOD DONATION
The advent of global social networks offers a unique opportunity to recruit and coordinate massive
numbers of donors, in order to meet a large and unpredictable demand for donor blood. The
Facebook Blood Donation Tool aims to seize this opportunity – using the widespread use of its online
platform to connect blood donors with nearby recipients (see Figure 2). Donors can also opt-in to
receive notifications about nearby donation opportunities. This tool is available in several countries
around the world, including Bangladesh, Brazil, India, Pakistan, and the United States; more than
35 million Facebook users have registered with this tool.6
In this paper we focus on a small but important feature of the Blood Donation tool: automatic

donor notifications. Our primary goal is to increase the number of blood donations around the world
by carefully selecting which opportunity to notify each donor about, and when to notify them. We
frame this question of donor notifications as an online matching problem, which we formalize in §4.
One might ask whether such a complicated approach is warranted in this setting: perhaps it does
not matter how and when donors are notified. To address this question, we first ask: how can tell
whether a Facebook user donates blood after we notify them?

3.1 Measuring Donation: Meaningful Action.
To design notifications that effectively encourage blood donation, it is necessary to observe when
a donor donates. However social networking platforms like Facebook cannot directly observe a
user’s action outside the platform. As a proxy, Facebook can instead observe when a donor takes

5Facebook Newsroom article: https://about.fb.com/news/2019/06/us-blood-donations/.
6https://about.fb.com/news/2019/06/us-blood-donations/.
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Fig. 2. The Facebook Blood Donation tool interface, where users can search for donation op-
portunities, and opt-in to receive notifications about nearby opportunities as they arise. (Source:
https://about.fb.com/news/2018/06/making-it-easier-to-donate-blood.)

meaningful action toward donation–after being notified. In our context, meaningful actions include
actions like creating a reminder to donate, or calling a blood bank (these actions are only observed
if taken within the Facebook platform).
Meaningful action (MA) has been validated as a reasonable proxy for actual blood donations,

using surveys of Facebook’s partner blood banks and hospitals. In the remainder of this paper, we
focus on increasing the number of donor MAs as a proxy for increasing the number of donations.
Our goal is to design a notification policy that chooses both (a) when to notify a donor, and (b) which
donation opportunity to notify them about. The next step in designing this policy is to understand
which notifications are likely to prompt donor MA. We begin with some high-level observations.

3.2 What Notifications Encourage Meaningful Action?
As an initial analysis we consider hundreds of millions of notifications sent to donors using Facebook
Blood Donation tool, over a one-month period. Below we describe some high-level observations of
this notification data; we leave a deeper analysis to future work:
(1) Meaningful action is rare: between 3% and 4% of all notifications lead to meaningful action.
(2) More-engaged donors are more likely to take meaningful action: Donors who tend

to use Facebook every day are about 43% more likely to take action than those who use
Facebook about once per week.

(3) New users are more likely to take action: donors who joined Facebook within the last
year are about 35% more likely to take action that those who have been users for longer.

(4) Older donors are more likely to take action: donors over 30 years old are about 22%
more likely to take action than donors under 30.

(5) Donors are more likely to take action if they are notified about a nearby opportu-
nity: Donors who are notified about opportunities who are less than 3km away are 20% more
likely to take action than those who are notified about further-away opportunities.

(6) Donors are more likely to take action if they haven’t been notified recently: Donors
who haven’t been notified about a donation opportunity in the past 60 days are about 12%
more likely to take action than those who have been notified in the past 60 days.

We emphasize that observations have been reflected in prior studies. (2) reflects the observation
of [33] and Sümnig et al. [34] that social pressure and influence from family or friends can increase
donation rates. (5) reflects the finding of Van Dongen et al. [35] and Godin et al. [17] that logistical
barriers to donation can impede donation rates. (6) reflects the finding of Yuan et al. [39] that blood
donors are concerned about receiving too many notifications.
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The likelihood of donor MA varies significantly, and is correlated with several features of both
the blood donor (e.g., when they were last notified) and donation opportunity (e.g., location). To
better capture these dependencies, we train a predictive model for estimating likelihood of donor
MA, using all available data from prior notifications. This model will be used in both our offline
and online experiments.

3.3 Machine Learning Model for Donor Action
To develop a machine learning (ML) model of donor action, we use all prior notifications sent
by the Facebook Blood Donation tool. This model takes an individual notification as input, and
predicts the probability that the donor will take action. Each notification is represented by a set of
features of both the donor and the donation opportunity (i.e., the inputs to the model); before being
deployed, this ML model and application passed through an internal review to protect user privacy.
Prior to training this model, we use industry-standard feature selection techniques to identify

the most important features for predicting donor MA; these features are (in decreasing order of
importance, with importance percentage in parenthesis): (1) whether the donor recently took
meaningful action (18%), (2) donor age (8.5%), (3) donor city (7.5%), (4) the number of Facebook
friends the donor has (7.3%), (5) the distance between donor and recipient (6.8%). Other relevant
features include the number of local donors (6.5%), number of times a donor has viewed the hub in
the last 30 days, and the number of days since the donor’s last notification.

Fig. 3. Distribution of labels in the
training dataset

Using the selected features, we train a gradient boosted
decision tree (GBDT) model. We use standard parameter-
sweep techniques to obtain the learning rate of 0.1, 120 trees,
a maximum tree depth of 5 and a maximum number of leaves
of 120. This model is trained using 10-fold cross-validation
on 80% of the the training data and an additional 10% for
validation; it achieves an AUC of 0.66 and logistic loss of
0.45, averaged over all training folds. Training this model
is particularly challenging because of the small number of
“positive” examples (i.e., the number of donor MAs). Figure 3
shows a histogram of prediction scores for all training data.
Most prediction scores are between 0-10%, with an average
of 3.43%–which closely the observed likelihood of MA.

We use this model to estimate how likely it is that a donor will take action, when notified about
a particular donation opportunity. Next we describe how to use this model to design a notification
policy: by framing blood donor recruitment as a matching problem.

4 BLOOD DONATION NOTIFICATION AS MATCHING
In this section we formalize the the donation scenario as a matching problem. In §4.1 we outline the
matching framework, in §4.2 we describe two objectives for this problem, and in §4.3 we show that
this problem is NP-complete under most conditions.

4.1 Matching Framework
We represent a blood donation problem as a weighted bipartite donation graph G = (U ,V , E), with
donors u ∈ U and donation opportunities (or recipients) v ∈ V . 7 Each vertex has a set of attributes

7We use the terms “donors" and “recipients" as shorthand for prospective donors and recipients. Facebook does not make any
determination about a person’s eligibility to donate blood; these are potential donors who sign up to receive notifications of
blood donation opportunities.



Duncan C McElfresh, Christian Kroer, Sergey Pupyrev, Eric Sodomka, Karthik Abinav Sankararaman, Zack Chauvin, Neil Dexter, and John P Dickerson7

(e.g., blood type, geographical location, and so on); donor and recipient attributes determine whether
a donor u can donate to a recipient v (i.e., whether u and v are compatible). Compatible pairs (u,v)
are connected by edges e = (u,v) ∈ E; we denote all edges adjacent to vertices u ∈ U (v ∈ V ) as Eu :
(E:v ). If an edge e = (u,v) exists, then donor u can be notified about v .

Time Dependence: The donation graph G is inherently dynamic, in that some edges may only be
in G temporarily. 8 We discretize time into days t ∈ T ≡ {1, . . .T }, with a finite-time horizon T .
Let V (t) and E(t) be the set of available recipients and edges at time t ; Eu :(t) (E:v (t)) are defined
similarly as the edges adjacent to donor u (recipientv). Furthermore, we assume that changes to the
edge set E(t) are due only to dynamic demand; that is, we assume that donors are always available
to receive donations. We assume that recipient arrivals (and edge sets) are unknown for all future
time steps. However we assume a known distribution of arrivals defined by pvt , the probability
that recipient v is present at time t . For ease of exposition, we set pvt ′ to 0 (1) for all recipients that
were absent (present) on observed (i.e., past and present) time steps t ′.

Edge Weights: Each edge e = (u,v) has weight equal to the probability that donor u donates to
recipient v once notified (i.e., the predicted MA likelihood, see §3.3). Edge weights may change
with time, and may depend on the donor’s notification history. For these reasons we index edge
weightswet by both edge e and time t .

Recipients: We consider both static recipients S ⊆ V , such as blood banks and hospitals, and
dynamic recipients D ⊆ V , such as blood drives or emergency requests. Static recipients are
available during all time steps, and edges into these recipients are always available (i.e., E:s (t) = E:s ).
In contrast, events arrive in an online manner, and are available only during a fixed subset of time
steps, denoted by T (d) ⊆ T . For time steps outside of this duration (any t ′ < T (d)) the edge set is
empty – i.e., E:d (t ′) ≡ ∅. In many cases it may be advantageous to “plan ahead”, and reserve some
donors for potential future events. This is not simply a modeling choice: unpredictable natural
disasters and health emergencies can cause spikes in the demand for donor blood that require
additional supply.

Donors: Once a donor signs up with the Facebook Blood Donation Tool, we say they are available
to receive notifications (i.e., to be matched) once every K days (for some reasonable K , around
two weeks). This limitation is motivated by respect for donors, and also the hard constraint on the
frequency of blood donations allowed by the country or municipality.9 Furthermore, initial analysis
of past notifications suggests that it is beneficial to notify donors periodically; we summarize these
observations with the following assumptions.

Assumption 1. If a donor is notified at time t , thenwet ′ = 0 for t ′ = t + 1, . . . , t + K .

In other words, donors are very unlikely to donate if we notify them more than once every K
days; in this paper we use K = 14.

Decision Variables: At each time t , we decide which notifications to send (i.e., which edges). Let
xet = 1 if we decide to notify a donor u using edge e = (u,v), and xet = 0 otherwise.

4.2 Matching Objectives
In this initial work we propose two matching objectives, to represent (a) the overall number of
donations, and (b) the equitable treatment of recipients.
8In this initial work, we assume the set of potential donors and donation centers do not change, although this longer-term
dynamism is certainly interesting to consider as future research.
9Typically 8 weeks or longer; see https://www.redcrossblood.org/faq.html.

https://www.redcrossblood.org/faq.html
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Efficiency Objective: Overall Number of Donations. Our first objective is to maximize the expected
number of total blood donations (henceforth efficiency). Using the notation from above, we can
express the overall efficiency of a matching policy as∑

t ∈[T ]

∑
e ∈E(t )

wetxet .

In general, we aim to select notifications (using xet ) to maximize this quantity.

Fairness: Proportional Allocation. We also want to treat recipients equitably. We take a utilitarian
approach to express fairness in this setting: let Uv ≡

∑
t ∈T

∑
e ∈E:v (t )wetxet be the utility awarded

to recipientv at time t (i.e., the total edge weight of all notifications about recipientv – the expected
number of donations to recipient v). In general we want recipients to receive an equal share of
donations. However not all recipients can receive the same number of donations. Recipients may
have different numbers of compatible donors (e.g., due to their location), or different edge weights
(e.g., due to donor preferences or recipient accessibility). For this reason we consider the scaled
utility for each donor,U s

v ≡ Uv/mv , wheremt is a normalization score defined for each recipient v .
In our model, n equitable notification policy should award roughly the same scaled utilityU s

v to all
recipients v over the entire time horizon T .

Normalization: Uniform Random Allocation as the “Equitable” Outcome. The fairness objective
defined above depends strongly on the choice of normalization. We consider a normalization score
motivated by the concept of proportional fair division [12]. In this setting, the “perfectly equitable”
matching is one in which each donor is matched uniformly at random to a recipient, as soon as
the donor is available (K days have passed since the donors’ last notification). We definemv as
the expected weight matched to recipient v under this uniform random matching. Calculatingmv
exactly would require extensive sampling or simulation, because edge weights depend on both
time and prior match decisions. Instead, at each time step t ′, we approximate the uniform-random
matching by only considering the next K time steps; due to Assumption 1, each donor is matched
at most once in this period, and thusmv can be calculated exactly. Let nu be the number of edges
adjacent to donor u during this time period:

nu ≡
t ′+K∑
t=t ′
|Eu :(t)|.

We calculatemv as follows:

mv ≡

t ′+K∑
t=t ′

∑
e=(u ,v)∈E:v (t )

wet

nu

In practice this notion of proportional may be too strict–and may decrease the overall welfare of
the matching market. For this reason use the following notion of relaxed proportional fairness.

Definition 4.1 (γ -Proportionally Fair Allocation). Let U s
v be the scaled utility awarded to recipient

v . This assignment is γ -proportionally fair if the following inequalities hold for all recipients v ∈ V :

γ

|V |

∑
v ′∈V

U s
v ′ ≤ U s

v ≤
1/γ
|V |

∑
v ′∈V

U s
v ′

for some γ ∈ (0, 1]. For assignments where there is no γ ∈ (0, 1] for which these constraints hold,
we say γ = 0.
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That is, the assignment is γ -proportionally fair if U s
v is within fraction γ and 1/γ of the mean

scaled utility over all recipients. Setting γ = 1 requires that all recipients receive the same scaled
utility, while setting γ = 0 makes these constraints non-binding (becauseU s

v ≥ 0). Throughout this
paper we will also refer to a recipient’s proportional outcome αv , defined as

αv ≡
U s
v

1
|V |

∑
v ′∈V

U s
v ′
.

Note that the proportional fairness constraints are equivalently expressible in terms of proportional
outcome, as

γ ≤ αv ≤ 1/γ ∀v ∈ V .

Before discussing solution approaches to this matching problem, we first show that in most cases
this matching problem is NP-hard.

4.3 NP Hardness
The following theorem states that the matching problem described in § 4 is strongly NP-hard when
fairness is considered, even for a single time step.

Theorem 4.2. The problem of maximizing overall donations subject to γ -proportionally-fair alloca-
tion and integer-only allocation is strongly NP-hard for any fixed γ ∈ (0, 1], even when T = 1.

The proof of Theorem 4.2 is given in Appendix D. While this matching problem is hard in general,
we never intend to solve it directly. The huge number of blood donors and recipients would likely
make this problem intractable even with an efficient linear programming formulation. Instead we
study several matching policies which are designed to be tractable in real settings, while using the
same objective and constraints described in this section.

5 MATCHING POLICIES FOR BLOOD DONATION
In this section we propose a class of stochastic matching policies to match blood donors donors and
recipients. In §5.1 we propose a stochastic matching policy which use distributional assumptions
of future demand; in §5.2 we propose a myopic variant of this policy, which ignores future demand;
in §5.3 we propose a final variant which ignores both future demand and fairness constraints.

5.1 LPMatch(γ ): A Stochastic Policy with a Limited Planning Horizon
Next we propose LPMatch(γ ), a realistic stochastic policy based on the LP relaxation of an offline-
optimal problem. At each time step t ∈ T , this policy considers a limited planning horizon including
the next H < K time step, denoted by TH ≡ {t ′, . . . , t ′ + H }. In addition, this policy includes
γ -proportional fairness constraints (see § 4) for only the planning horizonTH . In our setting, future
demand is unknown (i.e., the set of available recipients for future time steps). However we assume
distributional knowledge of future arrivals (see § 4); we refer to a fixed sequence of recipient arrivals
as a demand realization. For any particular demand realization wemight formulate an offline-optimal
matching policy – i.e., a mixed-integer linear program (MILP) which “perfectly” matches donors
with recipients. In this section we formalize an LP relaxation of the general offline-optimal MILP,
which upper bounds the objective value for any possible realization. LPMatch(γ ) uses an optimal
solution of this LP to derive a stochastic matching policy – similar to the approach of Dickerson
et al. [10] for matching passengers with drivers in a rideshare setting.
At each time step t , LPMatch(γ ) re-solves this LP relaxation to construct a matching for the

current time step. Note that using a longer time horizon introduces several complications: with
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H > K , donors may be matched more than once during TH , and weights can depend on decision
variables xet (see Assumption 1).

Next we formalize an LP relaxation for the offline-optimal MILP using the following parameters:

• pvt ∈ [0, 1], the probability that recipient v is present at time t . These probabilities may
depend on v’s history (e.g., whether or not v was present during the previous time step).
• Edge weightswet ≥ 0 – i.e., the probability that donor u takes action when notified about
recipient v along edge e = (u,v).
• γ ∈ [0, 1], the level of proportional fairness required of the outcome.

Decision variables xet ∈ R+ are defined for all edges e ∈ E(t) and all time steps t ∈ T . In
the offline-optimal MILP, xet ∈ {0, 1} is 1 if e is matched at time t and 0 otherwise; in the LP
formulation, xet is the probability that e is matched at time t , for any demand realization (i.e., in
any offline-optimal MILP).

Constraints. The following constraints require that each donor is matched at most once during
the time period TH : ∑

t ∈TH

∑
e ∈Eu :(t )

xet ≤ 1 ∀u ∈ U .

In any offline-optimal matching, a recipient v can only be matched if the recipient is present at
time t ; the following constraint upper-bounds the probability that recipient v is matched at time t
with pvt – the probability that v is present at t :

xet ≤ pvt ∀e ∈ E:v (t), v ∈ V , t ∈ T
H .

The above constraints ensure that the optimal objective to the LP upper-bounds the offline-
optimal objective, for any realization of stochastic online demand. Finally, the following constraints
enforce relaxed proportional fairness over fixed time horizon TH . Let VH denote the recipients
present at any time during TH :

γ

|VH |

∑
v ′∈VH

U s
v ′ ≤ U s

v ≤
1/γ
|VH |

∑
v ′∈VH

U s
v ′

with auxiliary variables

U s
v =

1
mv

∑
t ∈TH

∑
e ∈E:v

xetwet ,

wheremv is calculated using a uniform random matching over time horizon TH , as described in
Section 4. Note that these constraints consider only a subset TH of the complete timeline T . For
this reason, the notion of fairness in LPMatch(γ ) is localized in time (to rolling horizon TH ); the
matching result from LPMatch(γ ) is not expected to obey the “gloabl” fairness constraints described
in § 4.2.
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Problem 3 gives the complete LP relaxation.
max

∑
t ∈TH

∑
e ∈E(t )

wetxet

s.t. xet ∈ [0, 1] ∀e ∈ E(t) t ∈ TH

U s
vt ∈ R ∀v ∈ V (t), t ∈ TH

xet ≤ pvt ∀v ∈ V (t), e ∈ E:v (t), t ∈ T
H

t+k∑
t ′=t

∑
e ∈Eu :(t )

xet ≤ 1 ∀u ∈ U , t = {1, . . . ,TH − k}

U s
v =

1
mv

∑
t ∈TH

∑
e ∈E:v (t )

xetwet ∀v ∈ VH

U s
v ≤

1/γ
|VH |

∑
v ′∈VH

U s
v ′ ∀v ∈ VH

U s
v ≥

γ
|VH |

∑
v ′∈VH

U s
v ′ ∀v ∈ VH

(1)

Algorithm 1 describes the matching policy LPMatch(γ ). This algorithm takes as input pet andwet ,
both of which may be updated between time steps. After solving Problem 3, LPMatch(γ ) creates a
matching distribution for each recipient, with probabilities proportional to the optimal LP solution
x∗et . With probability

(
1 −

∑
e ∈Eu :(t ′) xet

)
the recipient is left unmatched.

ALGORITHM 1: LPMatch(γ )
input :t ′ (current time step),U (available donors), V (t ′) (available recipients), pvt ∀ v ∈ VH , t ∈ TH

(recipient arrival probabilities);wet ∀ e ∈ E(t), t ∈ T
H (edge weights)

output :E∗ (matched edges for time t )

x∗vt ← optimal solution to Problem 3
qv ←

∑
e ∈Eu :(t ′) xet ′ // total probability of matching v

for u ∈ U do

P [e ′] ←

{
xet ∗/qv , e ′ = e,∀e ∈ Eu :(t∗)

1 − qv , e ′ = ∅
// matching distribution for recipient u

sample e∗ ∼ P
end
return E∗

Next we consider two variants of LPMatch(γ ): a myopic policy LPMyopic(γ ) which consider
only the current time step, and a myopic max-weight policy MaxWeight which ignores fairness
constraints.

5.2 LPMyopic(γ ): Myopic Stochastic Matching
There are some cases where it is necessary or preferable to ignore future demand. For example, if the
number of donors or recipients is too large, Problem 3 may not be solvable in a reasonable amount
of time. If parameters pvt or wet are unknown or very uncertain, it may be unwise to use these
parameters to guide a matching policy. In this case we propose a variant of LPMatch(γ ), referred
to as LPMyopic(γ ), which considers only the current time step, t ′. LPMyopic(γ ) is equivalent to
LPMatch(γ ) in that is uses Algorithm 1, but considers no time horizon – i.e., TH ≡ {t ′}.
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We emphasize two key differences between LPMatch(γ ) and LPMyopic(γ ). First, since LPMyopic(γ )
considers only the current time step, all demand is assumed to be known (i.e., pvt ′ ∈ {0, 1}). Second,
the fairness constraints in Problem 3 ignore all future demand, and are thus far more “localized” in
time than those of LPMatch(γ ).

Next we discuss another modification of LPMatch(γ ) which does not consider fairness.

5.3 MaxWeight: Max-Weight Stochastic Matching Policy
The final policy we consider is MaxWeight – a myopic policy which ignores fairness constraints.
Removing these fairness constraints is equivalent to completely relaxing the γ -proportional fairness
constraints in Problem 3 Similar to LPMatch(γ ) and LPMyopic(γ ), MaxWeight uses Algorithm 1 to
match donors and recipients, however rather than solving Problem 3, MaxWeight uses the following
LP relaxation, Problem 2

max
∑

t ∈TH

∑
e ∈E(t )

wetxet

s.t. xet ∈ [0, 1] ∀e ∈ E(t) t ∈ TH

xet ≤ pvt ∀v ∈ V (t), e ∈ E:v (t), t ∈ T
H∑

t ∈TH

∑
e ∈Eu :(t )

xet ≤ 1 ∀u ∈ U

(2)

Note that under certain circumstances, this LP is expressible as a maximum network flow problem.
In particular, if all demand is known (i.e., pvt ∈ {0, 1}, as is the case with H = 0), then this LP is
equivalent to network flow, and has an integral solution. We characterize this case in Appendix C.

Next we describe the data and models used in both our offline and online experiments.

6 OFFLINE SIMULATIONS
In these experiments we compare the performance of three realistic matching policies in a simulated
computational setting. The policies we test in this section is realistic, in the sense that they only
have access the current state of the matching problem–and not about the future. These policies
notify each donor exactly once every K = 14 days (i.e., as soon as the donor becomes “available”).
All policies have access to the same set eligible edges (where the donor is less than 15km from the
recipient), provided by the edge weight model described in Section 3.3.

That is, the only difference between these policies is in which recipient they choose to notify each
donor about; we compare three different policies: MaxWeight (myopic max-weight matching), Rand
(each donor is randomly notified along an available edge), LPMyopic(γ ) (the myopic LP matching
policy with γ -relaxed fairness constraints).
We test each of these policies on several different cities, each with hundreds of thousands of

donors, and each with around 100 recipients. In these experiments we only consider offline recipients
(e.g., hospitals and large blood banks) which are always available. To emulate a real notification
setting where donors become available on a rolling basis, we randomly assign each donor a “start
day” between the 1st and the K th day of the simulation. We run these simulations for a 15-day
period, using data from November 2019.

6.1 Metrics: Efficiency and Fairness
There are two outcomes of each policy we wish to highlight: efficiency (i.e., total edge weight,
the total number of expected MAs), and fairness (i.e., the distribution of recipients’ proportional
outcomes αv ). Let x∗et be the final decision variables for a particular policy (i.e, x∗et is 1 if edge e is
matched at time t , and 0 otherwise). We calculate two sets of metrics for each policy, using the final
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decision variables x∗et : first, the total edge weightW (i.e., the total number of expected donations):

W ≡
∑
t ∈T

∑
e ∈E(t )

wetx
∗
et .

Second, the proportional outcome for each agent αv , defined as

αv ≡
U s
v

1
|V |

∑
v ′∈V

U s
v ′
,

with
Uv ≡

1
mv

∑
t ∈T

∑
e ∈E:v (t )

wetx
∗
et .

Note that notification policies Rand and LPMyopic(γ ) are stochastic–their outcomes may be
slightly different depending on a random seed set by the optimizer. For this reason, we simulate
20 different realizations of Rand and LPMyopic(γ ); we calculate the averageW and αv for each
recipient, over all 20 realizations.

Visualizing Policy Outcomes: Pareto Frontier. To visualize how these policies trade-off between
total edge weight (the overall number of donations) and fairness to recipients, we plot each
simulation outcome as a point, where the vertical axis corresponds to total matched weight, and
the horizontal coordinate corresponds to the median recipient scaled utility αv . (For the stochastic
policies, this is the median of the average αv for each recipient, over all 20 realizations.) Figure 4
shows the outcomes for each policy, for 12 different cities around the world.
As expected, MaxWeight always maximizes total edge weight, but often achieves a very low

median αv . In fact, in several of the cities (1, 2, 3, 5, 8, 10, 11, 12) MaxWeight results in a median αv
of zero. In these cases, at least half half of all recipients were left unmatched – i.e., no donors were
notified about these recipients.
On the other hand, Rand tends to maximize αv (often achieving a median value around 1 – or

“perfect” proportional fairness), but with a significantly lower total matched weight.
Somewhat surprisingly, our proposed policy LPMyopic(γ ) often achieves a Pareto improvement

over both Rand and MaxWeight. That is, there is often a γ such that either
• LPMyopic(γ ) achieves a greater total weight than Rand, without a lower median αv (nearly
all Cities in Figure 4), or
• LPMyopic(γ ) achieves a greater median αv than MaxWeight, without a lowerW (see Cities 1,
3, 6, 8, 11, 12).

Before discussing our online experiments, we highlight some lessons learned from these simula-
tions, whichmotivate our online experiments. First, maximizing edge weight (i.e., policy MaxWeight)
should increase the number of MAs by 10-15% over random notification, according to our predictive
model. This comes at a cost to fairness – in several instances, MaxWeight leaves at least half of all
recipients unmatched. Random notification (Rand) is often fair to recipients, but with much lower
matched weight. Our randomized fair policy (LPMyopic(γ )) moderates between the MaxWeight
and Rand policies, and often achieves a Pareto improvement over both MaxWeight and Rand. The
trade-off between efficiency and fairness is controlled smoothly using parameter (γ ).

7 ONLINE EXPERIMENTS
As a proof-of-concept, we compare the max-weight matching policy (MaxWeight) to the random
baseline policy (Rand, which is similar in behavior to the notification policy currently used by the
Blood Donation system), in an online experiment. The goal of this experiment is to answer the
question: can we increase the overall number of donor meaningful actions by carefully selecting which
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Fig. 4. Simulation outcomes for 12 cities around the world, each with hundreds of thousands of donors and
around 100 recipients. Each plots shows the total matched weight (W ) and median proportional recipient
outcome αv for notification policy Rand (blue circles), MaxWeight (shown as red “X”), and LPMyopic(γ ) (shown
as green “+”) forγ ∈ {0.1, 0.3, 0.5, 0.9, 1.0}. Note that LPMyopic(γ ) effectively moderates between a MaxWeight
and a the “fair” policy Rand, while consistently matching a much higher edge weight than Rand.

recipient to notify each donor about. Both of these policies notify donors once every K = 14 days;
they only differ in how they select a recipient to notify each donor about. Rand selects a nearby
recipient at random, while MaxWeight selects a nearby recipient with the greatest likelihood of
donor MA–according to our predictive edge weight model.

To compare these policies we design a randomized an online experiment, including hundreds of
thousands of donors registered with the Facebook Blood Donation tool. We randomly partition
these donors into a control group (who were notified using policy Rand) and a test group (who
were notified using policy MaxWeight). As in our simulations, we include only static recipients (e.g.,
hospitals and large blood banks), who are always available to receive donations.

Potential Impact on Donors and Recipients. This experiment was approved by an internal review
board. We emphasize that the impact of these experiments is minimal: the only difference between
the test and control group in this experiment is which donation opportunity the donor is notified
about. The impact on blood recipients is less clear: due to our experimental design we cannot
effectively measure the fairness of each notification policy in a meaningful way. However it is
possible that any optimization-based matching policy (e.g., MaxWeight or LPMyopic(γ )) prioritizes
certain recipients over others. This may marginalize recipients in rural areas or those with a limited
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Table 1. Online Experiments - Number of notifications (#Notifs) and meaningful actions (#MA), over the
online experiment. Notifications are separated into those sent to donors with only one compatible recipient
(1R), and those sent to donors with two or more compatible recipients (≥2R). Wilson score intervals are for
the percentage of notifications that lead to MA are presented as C ± R/2, where the 95% confidence interval
is [C − R/2,C + R/2].

Notif.
Group

Control (Rand) Test (MaxWeight)
#MA #Notifs %MA #MA #Notifs %MA

Experiment 1R 10,534 215,544 4.7 ± 0.1 10,755 214,841 4.8 ± 0.1
≥2R 17,479 469,887 3.6 ± 0.1 18,030 459,708 3.8 ± 0.1

Facebook presence. More thorough analysis of these impacts is necessary before more widespread
adoption of these policies.

7.1 Online Experiment Results
This experiment ran from Nov. 23 to Dec. 17, 2019 (26 days); in total, 1,359,980 donors were notified
from both the test and control group. In this experiment many donors had only one compatible
recipient – in this case, the donor was always notified about this recipient, regardless of the
notification policy. For clarity, we distinguish between notifications sent to donors who had only
one compatible recipient (1R), and those sent to donors with two or more compatible recipients
(≥2R). Thus we only expect to observe a difference between control and test groups for ≥ 2R
notifications; we expect the same outcome for (1R) notifications. Table 1 shows the number of
notifications and meaningful actions for notifications of each type (1R and ≥ 2R), in both the
test and control group.10 (Note that only ≥ 2R notifications are relevant for comparing the test
and control groups, though we report both for transparency.) The key result in these tables is the
percentage of notifications that led to meaningful action (%MA, a number on [0, 100]). Due to the
small sample size for certain cities we report the Wilson score interval for %MA as C ± R/2, where
[C − R/2,C + R/2] is the 95% confidence interval.
In the remaining discussion we consider only the ≥ 2R notifications, as there is no difference

between the test and control group for 1R notifications. For the overall experiment, %MA is about
5% higher for MaxWeight than for Rand. However for individual cities, the number of notifications
and MAs is too small to draw conclusions. To better understand the differences between the control
and test groups, we use two statistical tests to compare the overall results.

Overall Comparison. We use both a two-sided and one-sided Chi-square test to compare %MA
(≥ 2R notifications only) for the control and test groups, over all notifications sent during this
experiment. Let PRand and PMaxWeight represent %MA for the control (Rand) and test (MaxWeight)
groups, respectively. The two-sided test checks the null hypothesis H0: PRand = PMaxWeight (with al-
ternative PRand , PMaxWeight), while the one-sided test checks null hypothesisH0: PRand = PMaxWeight
(with alternative PRand < PMaxWeight). We can reject both of these null hypotheses with p ≪ 0.01. In
light of the results presented in Table 1, these statistical test suggests MaxWeight achieves a small
(∼ 5%) but significant improvement over Rand in terms of overall %MA. In the next set of statistical
tests we compare each day of the experiment as a separate trial.

Daily Paired Comparison. Next we treat day of the experiment as a set of paired measurements
of both PRand and PMaxWeight. For each day of the experiment (26 days in total) we calculate sample
10In Appendix E, we include a more detailed version of this table (Table 3) with results for 12 individual cities.
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Fig. 5. (Left) Estimated probability ofMA for the test group (PMaxWeight/100) and and control group (PRand/100)
for each day of the experiment, and (Right) total number of notifications sent to each group over 26 days.

estimates of PRand and PMaxWeight – i.e., the 100 times the ratio of MAs to overall notifications. Note
that donors are notified once every 14 days, meaning that the set of donors notified on any particular
day is nearly disjoint from the donors notified on any other day of the experiment; for this reason
we assume the measurements of PRand and PMaxWeight on different days are independent. Figure 5
shows both the total number of notifications sent on each day of the experiment, with the daily
measurement of PRand and PMaxWeight. Visually, MaxWeight nearly always achieves a higher %MA
than Rand on any given day. To investigate whether this difference is significant, we treat these
daily daily estimates as paired measurements of two separate distributions (i.e., the distribution
of daily measurements of PMaxWeight and PRand). We use a two-sided Wilcoxon signed-rank test to
check the null hypothesisH0: the median difference between PMaxWeight and PRand is zero. We reject
this null hypothesis (p ≪ 0.01), further confirming that notification policy MaxWeight yields a
higher MA rate than Rand.

8 DISCUSSION AND CONCLUSIONS
We introduce the problem of connecting blood donors with demand centers in a time-dependent
setting, with uncertain demand. We formalize an objective for this problem, including the objectives
of efficiency (maximizing the number of donations) and fairness for recipients. We propose a class
of stochastic policies, to which we compare a realistic randomized baseline.
We test these policies in both a simulated donation environment (using real data), and a real

donation system via the Facebook Blood Donation Tool. In simulations we see a clear tradeoff
between the overall number of donations and fairness (see Figure 4); the particular tradeoff between
these objectives depends on the notification policy used. Policy MaxWeight (which maximizes
edge weight/expected donations) results in a 10-15% increase in the overall number of expected
donations, compared to a random baseline (Rand). However MaxWeight also prioritizes certain
recipients over others. In many cities, these simulations show that more than 50% of recipients
are not notified by policy MaxWeight – presumably because these recipients are associated with
lower edge weights. On the other hand, Rand nearly always sends a “fair” amount of notifications
to each recipient, regardless of edge weight (see § 4.2 for a discussion of fairness). To mediate
between the extremes of Rand and MaxWeight, we propose a class of stochastic policies (LPMatch(γ )
and LPMyopic(γ )) In simulations these policies effectively control the balance between the overall
expected number of donations and fairness for recipients, using parameter γ .
As a proof-of-concept we run an online experiment via the Facebook Blood Donation Tool,

comparing notification policies Rand and MaxWeight. We find that MaxWeight results in about 5%
more meaningful actions (a proxy for donations) than Rand. In relative terms this improvement



Duncan C McElfresh, Christian Kroer, Sergey Pupyrev, Eric Sodomka, Karthik Abinav Sankararaman, Zack Chauvin, Neil Dexter, and John P Dickerson17

seems small, however the implications are quite meaningful. This experiment investigated one small
improvement to the notification strategy used by the Facebook Blood Donation Tool, i.e., whether
the donor is notified about a nearby donation opportunity at random (Rand), or notified about a
particular opportunity selected by a predictive model (MaxWeight). Several other modifications to
the notification policy might yield similar improvements: for example by changing how often each
donor is notified, by more carefully planning for future donation needs, or by tailoring notifications
to each donor’s unique preferences and values.
The potential impact of this work is considerable. Indeed, if our observed results generalize to

the entire community of Facebook blood donors, then a 5% increase in donor action corresponds
to at about 70, 00011 more donors taking meaningful action toward donation. Even if few of these
meaningful actions lead to actual donation, the increase is still substantial.
Before implementing these policies at a large scale in practice, it is important to understand

their potential impacts on both blood donors and recipients. In this study impact on donors is
minimal; the only difference between notification policies is which donation opportunity they are
notified about. However our simulation results indicate that blood recipients may face significantly
impacts from even a small change in notification policy. In simulations we find that notification
policy MaxWeight ignores most recipients in many cities, presumably because these recipients are
associated with low edge weights. In other words, MaxWeight tends to ignore recipients who are
associated with low likelihood of meaningful action – which may include recipients in rural areas,
or those with a limited Facebook presence. This observation is particularly troubling if low-weight
recipients are already unlikely to recruit donors, which we expect is the case. Of course, this
potential injustice is exactly the motivation for our stochastic policies LPMatch(γ ) and LPMyopic(γ ).

Blood donation is a global challenge, and has been the focus of many dedicated organizations and
researchers for decades. In this paper we investigate a new opportunity to recruit and coordinate a
massive network of blood donors and recipients, enabled by the widespread use of social networks.
We formalize a matching problem around matching blood donors with recipients, and test these
policies in both offline simulations and an online experiment using the Facebook Blood Donation
Tool. Our findings suggest that a matching paradigm can significantly increase the overall number
of donations, though it remains a challenge to do so while treating recipients equitably.
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A COMPARING THE MYOPIC AND OMNISCIENT LPS
In this section we compare the expected behavior of the LP-relaxation used by policy LPMyopic().
In particular, we investigate whether using a longer or shorter planning horizon H has any impact
on the objective value or constraints. We refer to the LP relaxation with an H -day horizon (i.e.,
Problem 3) as H-day.
To compare these LPs we construct a 5-day matching scenario using donor and recipient data

from a single city, with 29,646 donors, 80 recipients, and 36,700 edges. Donors can be notified once
every K = 14 days, and we consider a rolling time horizon of H = 5 steps (i.e., the complete time
horizon). We randomly assign each donor a prior-notification date, uniformly distributed between
−K and 0 days; this reflects the fact that donors arrive on a “rolling” schedule, not all at once.
However 1-DAY can only use knowledge on each given day. To simulate the 1-DAY approximation,
we solve the single-day LP (Problem ??) for each day sequentially; on each day, all available donors
are matched. Note that both N-DAY and 1-DAY match exactly the same donors over the complete
time horizon, but at possibly different times. There are two quantities of interest in comparing
these policies: (a) the objective value (i.e., the expected number of meaningful actions), and (b)
violation of the fairness constraints. Recall that our notion of proportional fairness pertains to
each recipient’s utility over the entire time horizon T . These constraints are explicit in the N-DAY,
while 1-DAY includes constraints only for each day. To investigate these constraints we calculate the
proportional outcome for each recipient αv , i.e., the expected scaled utility for recipient v divided
by the average scaled utility over all recipients. In these experiments αv is calculated the same
way as in previous sections, only using fractional decision variables x∗et ∈ [0, 1]. Recall that our
proportional fairness constraints require that, for each recipient v ,

γ ≤ αv ≤ 1/γ .
To visualize the violation of these fairness constraints, we plot αv for both 1-DAY and N-DAY.
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Fig. 6. (a) Objective value (total matched weight) of single-day LP (1-DAY) and multi-day LP (N-DAY), (b)
proportional outcomes αv for each recipient v ; red dotted lines indicate fairness constraints.

Figure 6a shows the objective values for both LP solutions, for γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The
1-DAY approximation consistently achieves a lower objective value than N-DAY (by about 15%). This
is expected: N-DAY can match a donor on any day after they arrive; in contrast, 1-DAY must match
each donor immediately. Surprisingly, the total objective both both formulations is nearly the same
constant for each γ .

Figure 6b shows boxplots of the ratioUv/U for each recipient; red dotted lines indicate the upper
and lower fairness constraints (i.e., γ and 1/γ ). As expected, N-DAY never violates these constraints
(i.e., the boxplots are completely within the red dotted lines), while 1-DAY violates these constraints.

Table 2 includes the total objective value and number of constraint violations for both LP
solutions.
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Table 2. Comparison of multi-day LP solution (N-DAY) to single-day approximation (1-DAY) for various γ .
Objective value (Total Weight) and number of constraint violations (# Violations) are shown.

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9
N-DAY
Total Weight 450.0 452.6 454.1 455.5 445.1
# Violations 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
1-DAY
Total Weight 386.0 385.9 392.2 390.6 383.7
# Violations 3 (4%) 7 (11%) 17 (25%) 27 (39%) 33 (71%)

The 1-DAY approximation consistently achieves a lower objective value than N-DAY (by about
15%), though the total objective is relatively constant for different values of γ .

Of course for this reason, 1-DAY is a more practical policy, as it makes no assumptions about the
future.

We might expect that policy 1-DAY
the difference between the fractional matching solution produced by the single-day and multi-day

LP formula. Specifically, we compare (a) the objective value (total weight, i.e., expected number
of meaningful actions), and (b) violation of the fairness constraints. Recall that our notion of
proportional fairness pertains to each recipient’s utility over the entire time horizon T . These
constraints are explicit in the multi-day LP formulation (Problem 3); however the single-day
formulation includes fairness constraints for only one day.

We compare
two proportionally fair policies with different time horizons. We aim to demonstrate that a

single-day policy (i.e., γ -FAIR) both (a) achieves about the same matched weight as a K-day policy,
and (b) does not significantly violate fairness constraints.

B PROOF OF COMPETITIVE RATIO
In this section we bound the worst-case performance our randomized policy γ-FAIR, compared
with an offline optimal notification policy. With some abuse of notation, let E[γ-FAIR] denote the
expected matching weight of policy γ-FAIR, given the distribution of recipient arrivals pvt and

max
∑

t ∈TH

∑
e ∈E(t )

wetxet

s.t. xet ∈ [0, 1] ∀e ∈ E(t) t ∈ TH

U s
vt ∈ R ∀v ∈ V (t), t ∈ TH

xet ≤ pvt ∀v ∈ V (t), e ∈ E:v (t), t ∈ T
H

t+k∑
t ′=t

∑
e ∈Eu :(t )

xet ≤ 1 ∀u ∈ U , t = {1, . . . ,TH − k}

U s
v =

1
mv

∑
t ∈TH

∑
e ∈E:v (t )

xetwet ∀v ∈ VH

U s
v ≤

1/γ
|VH |

∑
v ′∈VH

U s
v ′ ∀v ∈ VH

U s
v ≥

γ
|VH |

∑
v ′∈VH

U s
v ′ ∀v ∈ VH

(3)
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C MIN COST FLOW FOR A LIMITED PLANNING HORIZON
In this section we assume that T ≤ K , which means that every donor can be matched at most
once. This assumption can be leveraged to make certain variants of our problem substantially more
tractable. Furthermore, we assume that we are given upper and lower bounds uv , lv on demand for
each recipient v . With these assumptions, an optimal assignment for the model can be computed in
polynomial time (and efficiently in practice) via min-cost flow; this is easily seen by noting that the
problem for a single time step is an instance of the transportation problem. Multiple timesteps can
be handled by replicating each recipient T times, where replica t denotes the recipient receiving
donors on the t ’th day (this works because T ≤ K and thus each donor can be used at most once).
Formally, we construct the network flow problem as follows: each donor u ∈ U is instantiated

with a source node su with outgoing flow of 1. Each recipient v ∈ V is represented by nodes
nv1, . . . ,nvT , where nvt represents the donors assigned to v at day t (we can of course leave
out pairs v, t such that v is unavailable on day t , e.g. for events of limited duration). Each nvt is
connected to the single sink node, and the connecting edge has upper and lower bounds uv , lv on
capacity, and cost 0, we let Evs denote the edges from recipient v to the sink. For each edge in the
original graph e ∈ E we add edges e1, . . . , eT , with et representing using the edge e on day t ; each
et has cost −we and infinite capacity.

A solution to the min-cost flow model can be computed with the following LP

min
∑
t ∈T

∑
e ∈E
−wexet

s.t.
∑

t ∈T:t−K ≤t ′≤t

∑
e ∈Eu :

xet ′ ≤ 1 ∀u ∈ U , t ∈ T

lv ≤ xet ≤ uv ∀v ∈ V , e ∈ Evs , t ∈ T
0 ≤ xet ≤ 1 ∀e ∈ E, t ∈ T

(4)

Since each capacity is integral (or infinite), we know that an optimal integer solution exists, due
to the well-known property that basis solutions of the min-cost flow LP are integral in this case (see
e.g. [36]). Since T ≤ K we know that each donor can be assigned at most one time, and thus the
above construction is valid.

D PROOF OF NP-HARDNESS
Proof. Proof of Theorem 4.2. The proof is by reduction from the k-EQUAL-SUM-SUBSET

problem: given a multiset S of x1, . . . , xn positive integers, are there k nonempty disjoint subsets
S1, . . . , Sk ⊂ S such that sum(S1) = . . . = sum(Sk ). This problem is NP-hard for any fixed k > 1,
but strongly NP-hard when k varies as a function of n and k = Ω(n) [8].

Given an instance of k-EQUAL-SUM-SUBSET we construct an instance of fair donation matching
as follows: we add k recipients, one for each subset, and n donors, one for each integer xi . Each
donor i has edge weight xi to every recipient. First consider the case where γ = 1. In that case since
the proportional allocation awards the same utility to every recipient, we must find an allocation
that gives exactly the same utility to every recipient. A solution that allocates every donor now
corresponds exactly to an equal-sum partitioning. If such a solution exists, then it is the solution
that maximizes overall donations, since all weights are positive.

Finally, consider the case where γ < 1. A solution to our reduction above, if there exists a solution
to k-EQUAL-SUM-SUBSET, would give every recipient utility 1

3
∑

i xi . Now we add an auxiliary
recipient that has a donor with an edge only to them, with weight 1

3γ
∑

i xi . Now a γ -proportionally-
fair allocation that allocates any utility to the auxiliary recipient requires all recipients to get utility
1
3
∑

i xi , which is possible iff there is a solution to k-EQUAL-SUM-SUBSET. □
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Table 3. Online Experiments - Number of notifications (#Notifs) and meaningful actions (#MA), over the
online experiment. Notifications are separated into those sent to donors with only one compatible recipient
(1R), and those sent to donors with two or more compatible recipients (≥2R). Wilson score intervals are for
the percentage of notifications that lead to MA are presented as C ± R/2, where the 95% confidence interval
is [C − R/2,C + R/2]. The top row shows results for the entire experiment, while the following 12 rows show
results from each of the cities corresponding to Figure 4 (a small sampling of the overall experiment).

City
Number

Notif.
Group

Control (Rand) Test (MaxWeight)
#MA #Notifs %MA #MA #Notifs %MA

Experiment 1R 10,534 215,544 4.7 ± 0.1 10,755 214,841 4.8 ± 0.1
≥2R 17,479 469,887 3.6 ± 0.1 18,030 459,708 3.8 ± 0.1

1 1R 7 97 8.3 ± 5.0 6 95 7.6 ± 4.8
≥2R 14 255 5.8 ± 2.7 16 256 6.5 ± 2.8

2 1R 2 62 5.8 ± 4.9 1 61 4.4 ± 4.2
≥2R 37 1,822 2.1 ± 0.6 38 1,817 2.1 ± 0.7

3 1R 5 63 9.6 ± 6.5 6 50 13.2 ± 8.2
≥2R 36 495 7.1 ± 2.2 35 496 6.9 ± 2.1

4 1R 14 200 7.3 ± 3.4 10 192 5.8 ± 3.1
≥2R 54 1,109 4.8 ± 1.2 62 1,139 5.3 ± 1.3

5 1R 4 10 33.2 ± 21.5 1 12 17.3 ± 16.0
≥2R 17 256 6.8 ± 2.9 13 290 4.9 ± 2.3

6 1R 3 55 8 ± 6.2 3 47 9.1 ± 7.1
≥2R 16 247 6.7 ± 2.9 22 224 9.6 ± 3.6

7 1R 1 57 4.7 ± 4.4 0 45 3.9 ± 3.9
≥2R 71 2,099 3.4 ± 0.8 71 2,070 3.4 ± 0.8

8 1R 3 25 15.5 ± 11.7 1 23 10.5 ± 9.8
≥2R 14 342 4.4 ± 2.1 31 381 7.9 ± 2.6

9 1R 11 148 7.9 ± 4.0 7 140 5.9 ± 3.6
≥2R 141 3,755 3.7 ± 0.6 170 3,949 4.2 ± 0.6

10 1R 0 33 5.2 ± 5.2 3 45 9.5 ± 7.3
≥2R 20 262 7.7 ± 3.0 20 289 7.0 ± 2.8

11 1R 313 5,467 5.4 ± 0.6 318 5,376 5.6 ± 0.6
≥2R 14 268 5.6 ± 2.6 17 218 7.9 ± 3.4

12 1R 48 668 6.9 ± 1.8 39 646 5.9 ± 1.7
≥2R 70 854 7.8 ± 1.7 66 843 7.4 ± 1.7

E ADDITIONAL REAL-WORLD ONLINE EXPERIMENTS
Table 3 below is an extended version of Table 1 from Section 7.1 in the main body of the paper.
Both tables summarize results from our real-world, online experiment; additionally, Table 3 gives
results for 12 individual cities.
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