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Abstract

We design a dictionary in which speech signals have
a sparse representation. We utilize the property that
speech is comprised of a fixed number of phonemes.
The dictionary is a concatenation of the princi-
pal components of all these phonemes, and hence
information about each phoneme is present in a
block. Since any speech signal is a concatenation of
phonemes, it can be represented as a linear combina-
tion of the columns of this dictionary. In particular,
if we consider a small window of speech (containing
no more than two phonemes), such a signal would
ideally have a block sparse representation in the dic-
tionary. The representation is obtained by solving
a variation of the LASSO or basis pursuit denoising
(BPDN) problem. We show that the representation
is sparse enough to achieve compression. Finally, our
intuition is that such a representation could also im-
plicitly perform denoising.

1 Introduction

Speech is comprised of a fixed number of basic speech
units called phonemes. An important characteristic
of phonemes is that each of them occupy a unique
frequency band, which makes them easily identifiable
in the frequency domain. Therefore, to represent a
phoneme in this domain it is crucial to know the com-
ponents that represent the corresponding frequency.
In compressed sensing literature, an important as-

sumption made is that signals have a sparse repre-
sentation in some basis [CW08]. For example, im-
ages are known to have a sparse representation in
a DCT basis or a wavelet basis. For images, us-
ing redundant representations and sparsity as driving
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Figure 1: A typical speech spectrogram. The horizon-
tal axis represents time, the vertical axis is frequency; a
third dimension indicating the amplitude of a particular
frequency at a particular time is represented by a heat
map (red indicating higher values and blue lower values).

forces for denoising of signals has drawn a lot of re-
search attention [Don95, EA06]. The Lasso problem
is sometimes referred to as the basis pursuit denoising
problem (BPDN) for this reason.

Our primary objective was to find a dictionary over
which speech signals have a sparse representation. To
do so, we represent human speech intelligently in a
domain that allows us to exploit the inherent proper-
ties of speech. We solve a modification of the BPDN
problem and test the denoising performance. Solv-
ing this problem also has the distinct advantage of
identifying the phonemes present in the signal.

2 Prerequisites

A speech spectrogram is a representation of the spec-
trum of frequencies of a speech signal as it varies with
time. Figure 1 shows a typical speech spectrogram.
The horizontal axis represents time, the vertical axis
is frequency; a third dimension indicating the ampli-
tude of a particular frequency at a particular time
is represented by a heat map (red indicating higher
values and blue lower values).
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To obtain a frequency domain representation for
the speech signal, we use the Discrete Cosine Trans-
form (DCT). Formally, if xi, i = 1, . . . , n represents
a section of the speech signal, then Xk’s given

Xk =

N−1
∑

n=0

xn cos

[

π

N

(

n+
1

2

)

k

]

, k = 0, . . . , N − 1,

are the DCT coefficients of that section of the speech
signal. Assume, the Xk’s are in a column vector. The
DCT spectrogram is simply obtained by concatenat-
ing the DCT coefficient column vectors for consecu-
tive sections(possibly overlapping) of speech.
Notations :

• We refer to principal components that corre-
spond to the highest eigenvalues as the top prin-

cipal components.

• Θ represents the set of all phonemes. Any
phoneme is represented as /θ/.

3 Dictionary design

In this section, we discuss the dataset used and the
details involved in designing the dictionary.

3.1 Dataset

The TIMIT speech corpus that consists of time-
aligned orthographic, phonetic and word transcrip-
tions is used. TIMIT contains a total of 6300 sen-
tences (5.4 hours), consisting of 10 sentences spoken
by each of 630 speakers from 8 major dialect regions
of the United States. All sentences are manually seg-
mented at the phone level. The dataset has been
annotated with 38 phonemes. The sampling rate is
16000Hz. The training set contains 3696 sentences
from 462 speakers (3.14 hours). The test set contains
1344 sentences from 168 speakers (0.97 hours). The
training and test sets do not overlap.
The duration of phonemes vary, but are no less

than 50ms for the English language. We consider
20ms segments to ensure that it contains no more
than two phonemes. Since one phoneme can end and
another can begin in one time window, it is impossible
to ensure that there is only one phoneme per window.
The sampling rate is 16000Hz, we have 320 samples in
a 20ms time window, that is, a speech vector of length
320. In this report, we refer to the DCT coefficients
of this vector as y.

3.2 Principal Component Analysis

We first extract individual phonemes from a
database. Principal component analysis (PCA) is
performed on the DCT coefficients of speech vectors

of these phonemes. An important intuition to have
about PCA is as follows: When PCA is performed
on the DCT coefficients of a particular phoneme, the
top principal components contain information about
the frequency band that the particular phoneme oc-
cupies. Since the frequency band occupied by a
phoneme is small, it is sufficient to pick a small num-
ber of principal components.
Let the PCA basis of a particular phoneme be de-

noted by E. Based on eigenvalue analysis, the top
k principal components of a phoneme /θ/ are se-
lected. E(θ) is the reduced principal component ma-

trix, and is no longer a basis. Although this matrix
does not allow for exact reconstruction, it is useful
for good estimation. The dictionary D is a concate-
nation of the reduced principal component matrices
for all the phonemes, that is, a concatenation of the
E(θ)’s. Each E(θ) is a block, with k columns. Thus,
the block size is k.

4 Convex Program Formula-

tion

Let y be the section of the signal for which we want
to have a sparse representation x in the dictionary
D. Ideally, the optimization problem P0 to obtain a
block sparse solution is

minimize
T∈Rm,x∈Rn

‖T ‖0

subject to Dx = y

Ti =

√

∑

k∈ block i

x2
k, i = 1, . . . ,m

(P0)
where m is the number of phonemes, block i repre-
sents the ith block or the components of x correspond-
ing to the ith phoneme, and ‖ · ‖0 is the cardinality.
The above problem is nonconvex and difficult to

solve. Also, note that Dx = y may render P0 infeasi-
ble sinceD is a concatenation of the reduced principal
component matrices and may not necessarily form a
basis. However, y can be closely estimated by using
D, even with the block sparse constraints. ‖Dx−y‖2
represents the error we want to minimize. Let the
estimate of y be ŷ = Dx. Now, P0 is relaxed as the
following minimization problem P1
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minimize
x∈Rn

m
∑

i=1

√

∑

k∈ block i

x2
k

subject to ‖Dx− y‖2 < ǫ,

(P1)

which is convex. The sparsity “ℓ2,0” norm minimiza-
tion problem in P0 is relaxed to an ℓ2,1 norm min-
imizaton problem. P1 is the closest possible con-
vex problem to P0. If D satisfies certain proper-
ties [DE03], the above problem gives us the optimal
sparse solution. Note that P1 is closely related to the
LASSO or the BPDN problem, but has block sparsity
constraints.

5 Methodology

In this section we will describe the various algorithms
we used for achieving our goals. In the experiments
section, we will provide the results for each of these
methods and give a comparative study.

5.1 Solving the Convex

Programming Formulation

The method we tried was to directly solve the convex
programming relaxation P1 to the original problem.
We used the CVX toolbox to solve the problem. The
advantage of this method was that solving this pro-
gram gives us reasonable block sparse solutions. Ad-
ditionally, we can have a good control over the error
rate. The family of optimal solutions obtained was
close to the expected solutions. But the biggest draw-
back was that this method was not scalable. CVX
was significantly slow and running this program for a
single sound file took several hours of CPU time on
a 4GB RAM machine.

5.2 LASSO

The next method we tried was the LASSO [Tib94],
where we ignore the block sparsity constraints. The
convex relaxation P1 can be further relaxed as the
following LASSO problem.

minimize
x∈Rn

1

2
||Dx− y||2 + α||x||1

Notice that, for an arbitrary value of α the value
of the optimal solution to the original convex prob-
lem and the LASSO problem may not be the same.
However, we know that there exists a value of α such
that the two optimal solutions can be made same.

But for this value of α, the obtained optimal solution
may not have the other desired properties (such as
reconstruction with minimized error). Hence, we fine
tuned the parameter to obtain the best performance.
In particular, define αmax = ||DT y||∞. The value of
α was set to 0.5 ∗ αmax.
The above LASSO problem was solved using the

Alternating Direction Method of Multipliers(ADMM)
[BPC+11]. The running times were improved by a
factor of 100 as opposed to solving P1 on CVX on
the same 4GB RAM machine.
As described in the original paper of [BPC+11], the

ADMM formulation of the above LASSO problem is

minimize
x,z∈Rn

f(x) + g(z)

subject to x = z

where f(x) = 1
2 ||Dx − y||2 and g(z) = α||z||1. The

ADMM step is then

xk+1 := (DTD + ρI)−1(DT y + ρ(zk − uk))

zk+1 := Sα/ρ(x
k+1 + uk)

uk+1 := uk + xk+1 − zk+1

Here, Sα/ρ is the elementwise soft-thresholding
function S : R → R defined as follows

Sα/ρ(a) = a

(

1−
α

aρ

)

+

Additionally, Sα/ρ(0) = 0.

5.3 Group LASSO

Notice that, in Section 5.2 even though the formula-
tion enforces sparsity on the solution x, the obtained
solution need not necessarily be group sparse. Recall
that, the section of the signal is chosen such that at
most two phonemes are present. Hence, we run the
group LASSO, where the regularizer term is replaced
by a ℓ1-norm of the groups. More formally, with ev-
ery group we first take the ℓ2-norm of the variables
in that group. Finally, the regularizer term is the
ℓ1-norm of these terms.
Mathematically, the group Lasso problem is writ-

ten as the following program. Here, the size of each
block is n/m.

minimize
x∈Rn

1

2
||Dx− y||2 + α

m
∑

i=1

√

∑

k∈block(i)

x2
k
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The value α in the above programwas fine-tuned to
give the best performance. Again, defining αmax =
||DT y||∞ we set α = 0.1αmax The above program
was again solved using ADMM. As described in
[BPC+11], the above formulation can be cast as the
following ADMM problem

minimize
x,z∈Rn

f(x) + g(z)

subject to x = z

where f(x) = 1
2 ||Dx− y||2 and

g(z) = α
∑m

i=1

√

∑

k∈block(i) z
2
k.

The ADMM step is as follows

xk+1 := (DTD + ρI)−1(DT y + ρ(zk − uk))

zk+1 := Sα/ρ(x
k+1
i + uk)

uk+1 := uk + xk+1 − zk+1

Here, the proximal operator Sα/ρ is a vector gen-
eralization of the one in 5.2. In particular, it is a
function S : Rn → R

n defined as follows.

Sα/ρ(a) =

(

1−
α

||a||2ρ

)

+

a

Additionally, Sα/ρ(0) = 0.

We transform the optimal solution x∗ to a solution
x̂∗ by retaining only the values of the two most signif-

icant blocks and setting all other coordinates to zero.
We use this as the final solution.

5.4 Orthogonal Matching Pursuit

Apart from the above three convex optimization tech-
niques, we tried two greedy approaches. Although
they were faster in terms of speed, their performance
on the denoising task was understandably poor. In
this sub-section we will describe one of those ap-
proaches, namely the Orthogonal Matching Pursuit

(OMP) algorithm [TG07].

The OMP algorithm takes a matrix D of size d×n
and a vector y which is d-dimensional as inputs. Ad-
ditionally, it also takes an integer k which represents
the sparsity of the output vector x. The algorithm
outputs a n-dimensional vector x such that Dx = ŷ
is an estimate of the actual signal y. The complete
algorithm is described in Algorithm 1.

Algorithm 1 OMP algorithm for sparse signal re-
covery

1: procedure OMP

2: Initialiaze r0 = y.
3: Set index set C0 = φ
4: for t = 1, 2 . . . , k do

5: Find, breaking ties arbitrarily

λt = arg max
j=1,2,...,n

|〈rt−1, Dj〉|

6: Update the used index set

Ct = Ct−1 ∪ {λt}

7: Update chosen columns matrix

Dt = [Dt−1Dλt
]

8: Solve the following least squares problem
to obtain a new current estimate

xt = argmin
x

||y −Dtx||2

9: Update the residual as follows

at = Dtxt

rt = y − at

10: end for

11: The estimate x has non-zero entries at the
indices λ1, λ2, . . . , λk. The entry at index λi is
the ith co-ordinate of xi.

12: end procedure

5.5 Block Orthogonal Matching Pur-

suit

In this section, we will describe the other Greedy
approach, known as the Block Orthogonal Matching

Pursuit (BOMP) as introduced in [EB09]. This
algorithm is a modification of OMP to account for
the block sparsity constraints.

The input to BOMP is the same as in Algorithm 1.
Algorithm 2 summarizes the algorithm. In the de-
scription of the algorithm, D[i] refers to the columns
corresponding to the block i. Additionally, D[i]j
refers to the jth column in block i of matrix D.
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Algorithm 2 BOMP algorithm for sparse signal re-
covery

1: procedure BOMP

2: Initialiaze r0 = y.
3: Set index set C0 = φ
4: for t = 1, 2 . . . , k do

5: Find, breaking ties arbitrarily

λt = arg max
j=1,2,...,n/m

(

max
i=1,2,...,m

|〈rt−1, D[j]i〉|

)

6: Update the used index set

Ct = Ct−1 ∪ {λt}

7: Update chosen columns matrix

Dt = [Dt−1D[λt]]

8: Solve the following least squares problem
to obtain a new current estimate

xt = argmin
x

||y −Dtx||2

9: Update the residual as follows

at = Dtxt

rt = y − at

10: end for

11: The estimate x has non-zero entries at the
indices λ1, λ2, . . . , λk. The entry at index λi is
the ith co-ordinate of xi.

12: end procedure

6 Experiments and results

We study two main characteristics.

1. Variation of estimation accuracy of various algo-
rithms with block size.

2. Denoising performance of various algorithms
with block size.

Recall that the block size refers to the number of prin-
cipal components selected for each phoneme.
Given a signal y, the objective is to find its sparse

representation x in the dictionary D such that the
error ‖y−Dx‖2 is small. Let ŷ = Dx be the estimate
of y, the estimation error is therefore ‖y − ŷ‖2. We
say the estimation accuracy is good, if the estimation

error is low.

Block size
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Figure 2: Variation of estimation accuracy of various
algorithms with block size.

Also recall that performing PCA allows each block
to estimate a particular phoneme to a high accuracy.
However, if we do not pick all the principal compo-
nents, we can not have a basis (we need n columns to
have rank n). Hence, there will always be some error
in estimation.
The metric used to compare the performance is

signal-to-noise ratio (SNR), measured in dB. If ŷ is
the estimate of true signal y, SNR is calculated as

SNR(y, ŷ) = 20 ∗ log10
‖y‖2

‖y − ŷ‖2
.

Note that the if the estimation error is low, SNR is
high.
For the algorithms, note that OMP1 and BOMP1

have their sparsity set to the block size, and OMP2
and BOMP2 have sparsity set to twice the block size.

6.1 Estimation accuracy

Figure 2 shows the variation of the estimation accu-
racy with block size. As expected, if the number of
principal components selected for each phoneme is in-
creased, each block is closer to forming a basis. If each
block was indeed a basis, the estimation error would
be zero. Clearly, as the number of principal compo-
nents are increased, the estimation error reduces, or
the SNR increases.
Although each block is capable of estimating a par-

ticular phoneme, some of the principal components
of different phonemes are similar (have strong cor-
relation) since they may have overlapping frequency
bands. A greedy algorithm (e.g. BOMP) which tries
to find a a block that contains components with the
strongest correlation, may select the wrong block be-
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Figure 3: Denoising performance of various algorithms
with block size. Input SNR = 10.86 dB.

cause of these correlations between blocks. This ex-
plains the poor estimation accuracy of the BOMP1
algorithm that picks only one block. Picking two
blocks (BOMP2) improves the accuracy.
However, solving the Group LASSO problem, im-

proves the accuracy significantly even though its av-
erage sparsity is about two blocks indicating that
it is capable of finding the best two blocks. Solv-
ing this problem also provides us information about
the phonemes present in the signal since the blocks
that are active correspond to the phonemes that are
present.
We also consider two algorithms that solves the

problem without block sparsity constraints (the
LASSO problem), using OMP1 and ADMM. Since
we do not expect more than one block to be active,
the average sparsity is set to around 1.2 times the
block size for the ADMM. Thus, the performance of
OMP1 and solving LASSO using ADMM are very
similar.
The sparsity for OMP2 is set to twice the block

size, and it is seen that it performs significantly better
than OMP1. An important conclusion can be drawn
from this: Sometimes, the principal components of
the inactive phonemes can better estimate a part of
the signal, as opposed to that of the active ones. This
is further motivation to limit the size of each block.

6.2 Denoising performance

Consider the additive noise model

η = y + w,

where y is the clean signal, w is additive white Gaus-
sian noise, and η is the noisy signal. The denoising

problem is to estimate ŷ from η such that ‖y− ŷ‖2 is
minimized. The question we pose is, does imposing
sparsity constraints denoise the signal η?

Figure 3 shows the variation of the denoising per-
formance of various algorithms with block size. An
important observation is that the denoising perfor-
mance no longer improves with increasing block size.
Since increasing the block size results in each block
being closer to a basis, the estimate ŷ is closer to η
than to y, even when block sparsity constraints are
imposed. Thus, the denoising performance becomes
worse if the block size is increased from 80 to 100.
Solving the Group LASSO problem results in best de-
noising performance among the algorithms and has a
4 dB improvement over the noisy signal. The denois-
ing performance of the other algorithms follow the
same trend as their estimation performance.

We summarize the results:

1. We achieve compression by obtaining a sparse
representation.

2. We perform denoising by solving a modification
of the BPDN problem.

3. Solving the Group LASSO problem results in
best denoising performance, has good estima-
tion accuracy, and also allows us to identify the
phonemes present in the signal.

7 Conclusions

We intelligently designed a dictionary in which speech
has a sparse representation by utilizing certain prop-
erties of speech. We obtained the sparse represen-
tation by solving a modification of the LASSO or
BPDN problem. The advantages of solving this prob-
lem with block sparsity constraints has three advan-
tages: compression, denoising, and phoneme iden-
tification. Future work involves utilizing language
models for improving speed of the program. Two
consecutive sections usually have the same phoneme
active and hence, using this information should pos-
sibly give better results. We also aim at applying
our method to phoneme identifications in multiple
sources of sounds, in the future. For example, we be-
lieve that our method can be used in filtering out the
spoken words from background music(An important
feature which many current voice recognition soft-
wares such as Siri, could benefit from).
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